surftop5.pdf
Abstract
AI
AI
This paper discusses the mathematical foundations of fractals, specifically focusing on self-similar structures and their representations through iterated function systems (IFS). Various examples such as the Sierpinski gasket and the Heighway dragon are analyzed to illustrate the principles of contraction mappings and fractal generation. The author presents visual representations of these fractals through iterations, highlighting their mathematical properties and significance in geometrical spaces.
References (42)
- Lars V. Ahlfors and Leo Sario. Riemann Surfaces. Princeton Math. Series, No. 2. Princeton University Press, 1960.
- James W. Alexander. Normal forms for one-and two-sided surfaces. The Annals of Mathematics, 16(1/4):158-161, 1915.
- Mark A. Amstrong. Basic Topology. UTM. Springer, first edition, 1983.
- Ethan D. Bloch. A First Course in Geometric Topology and Differential Geometry. Birkhäuser, first edition, 1997.
- Henry Roy Brahana. Systems of circuits on two-dimensional manifolds. The Annals of Mathematics, 23(2):144-168, 1921.
- Glen E Bredon. Topology and Geometry. GTM No. 139. Springer Verlag, first edition, 1993.
- Max Dehn and Poul Heegaard. III AB.3 Analysis Situs. In W.F. Meyer, editor, Encyk- lopädie Der Mathematischen Wissenschaften Mit Einschluss Ihrer Anwendungen, pages 153-220. Druck Und Verlag Von B.G. Teubner, Leipzig, 1907.
- Jean Dieudonné. Abrégé d'Histoire des Mathématiques, 1700-1900. Hermann, first edition, 1986.
- Jacques Dixmier. General Topology. UTM. Springer Verlag, first edition, 1984.
- Manfredo P. do Carmo. Differential Geometry of Curves and Surfaces. Prentice Hall, 1976.
- Albrecht Dold. Lectures on Algebraic Topology. Springer, second edition, 1980.
- Gerald A. Edgar. Measure, Topology, and Fractal Geometry. Undergraduate Texts in Mathematics. Springer Verlag, first edition, 1992.
- Maurice Fréchet and Ky Fan. Invitation to Combinatorial Topology. Dover, first edition, 2003.
- William Fulton. Algebraic Topology, A first course. GTM No. 153. Springer Verlag, first edition, 1995.
- Jean H. Gallier. Geometric methods and Applications For Computer Science and Engi- neering. TAM No. 38. Springer-Verlag, first edition, 2000.
- Allen Hatcher. Algebraic Topology. Cambridge University Press, first edition, 2002.
- Michael Henle. A Combinatorial Introduction to Topology. Dover, first edition, 1994.
- D. Hilbert and S. Cohn-Vossen. Geometry and the Imagination. Chelsea Publishing Co., 1952.
- Morris W. Hirsch. Differential Topology. GTM No. 33. Springer Verlag, first edition, 1976.
- Camille Jordan. Sur la déformation des surfaces. Journal de Mathématiques Pures et Appliquées, 2 e série, 11:105-109, 1866.
- Bela M. Kerékjártó. Vorlesungen über Topologie, I. Julius Springer, first edition, 1923.
- L. Christine Kinsey. Topology of Surfaces. UTM. Springer Verlag, first edition, 1993.
- Felix Klein. Ueber den zusammenhang der flächen. Mathematische Annalen, 9:476-482, 1875.
- Felix Klein. Über Riemanns Theorie der Algebraischen Funktionen und Ihrer Integrale. Druck Und Verlag Von B.G. Teubner, first edition, 1882.
- F. Levi. Geometrische Konfigurationen. Leipzig, first edition, 1929.
- Johann Bennedict Listing. Der census räumlicher complexe oder verallgemeinerung des euler'schen satzes von den polyëdern. Abhandlungen der Königlichen Gesellschaft der Wissenschaften in Göttingen, 10:97-182, 1862.
- William S. Massey. Algebraic Topology: An Introduction. GTM No. 56. Springer Verlag, second edition, 1987.
- William S. Massey. A Basic Course in Algebraic Topology. GTM No. 127. Springer Verlag, first edition, 1991.
- August Ferdinand Möbius. Zur theorie der polyëder und der elementarverwandtschaft. Oeuvres Complètes, Tome 2:519-559, 1861.
- August Ferdinand Möbius. Theorie der elementarem verwandtschaft. Berichte über die Verhandlungen der Königlich Sächsischen Gesellschaft der Wissenschaften, Mathematisch-physikalische Klasse, 15:19-57, 1863.
- August Ferdinand Möbius. Ueber die bestimmung des inhaltes eines polyëders. Berichte über die Verhandlungen der Königlich Sächsischen Gesellschaft der Wissenschaften, Mathematisch-physikalische Klasse, 17:31-68, 1865.
- James R. Munkres. Topology, a First Course. Prentice Hall, first edition, 1975.
- James R. Munkres. Elements of Algebraic Topology. Addison-Wesley, first edition, 1984.
- K. Reidemeister. Einführung in die Kombinatorische Topologie. Braunschweig, first edition, 1932.
- Bernhard Riemann. Théorie des fonctions abéliennes. Journal de Crelle, 54:105-178, 1857.
- Joseph J. Rotman. Introduction to Algebraic Topology. GTM No. 119. Springer Verlag, first edition, 1988.
- Hajime Sato. Algebraic Topology: An Intuitive Approach. MMONO No. 183. AMS, first edition, 1999.
- Laurent Schwartz. Analyse I. Théorie des Ensembles et Topologie. Collection Enseigne- ment des Sciences. Hermann, 1991.
- H. Seifert and W. Threlfall. A Textbook of Topology. Academic Press, first edition, 1980.
- Isadore M. Singer and John A. Thorpe. Lecture Notes on Elementary Topology and Geometry. UTM. Springer Verlag, first edition, 1976.
- Williams P. Thurston. Three-Dimensional Geometry and Topology. Princeton Math. Series, No. 35. Princeton University Press, 1997.
- Walther von Dyck. Beiträge zur analysis situs. Mathematische Annalen, 32:457-512, 1888.