Academia.eduAcademia.edu

Outline

IRIM at TRECVID 2012: Semantic Indexing and Instance Search

2012

Abstract
sparkles

AI

The IRIM group participated in the TRECVID 2012 semantic indexing and instance search tasks, utilizing a six-stage processing pipeline comprising descriptor extraction, optimization, classification, fusion, higher-level fusion, and re-ranking for semantic indexing, achieving a MAP of 0.2378. For instance search, a two-step fusion of similarity scores was employed, resulting in a MAP of 0.1192. The paper details the methodologies, evaluations, and rankings achieved in these tasks.

References (39)

  1. A. Smeaton, P. Over and W. Kraaij, Evaluation cam- paigns and TRECVid, In MIR'06: Proceedings of the 8th ACM International Workshop on Multimedia Infor- mation Retrieval, pp321-330, 2006.
  2. P. Over, G. Awad, J. , B. Antonishek, M.2Michel, A. Smeaton, W. Kraaij, and G. Quénot, TRECVID 2012 -An Overview of the Goals, Tasks, Data, Eval- uation Mechanisms, and Metrics In Proceedings of the TRECVID 2012 workshop, Gaithersburg, USA, 26-28 Nov. 2012.
  3. Y.-C. Cheng and S.-Y. Chen. Image classification using color, texture and regions. In Image and Vision Com- puting, 21:759-776, 2003.
  4. P.H. Gosselin, M. Cord, Sylvie Philipp-Foliguet. Com- bining visual dictionary, kernel-based similarity and learning strategy for image category retrieval. In Com- puter Vision and Image Understanding, Special Issue on Similarity Matching in Computer Vision and Multi- media. Volume 110, Issue 3, Pages 403-41, 2008.
  5. M. Redi and B. Merialdo. Saliency moments for image categorization, In ICMR 2011, 1st ACM International Conference on Multimedia Retrieval, April 17-20, 2011, Trento, Italy.
  6. R. Negrel, D. Picard and P.H. Gosselin. Compact Ten- sor Based Image Representation for Similarity Search. In IEEE International Conference on Image Processing, Orlando, Florida, U.S.A, September 2012.
  7. A. Oliva and A. Torralba, Modeling the shape of the scene: A holistic representation of the spatial envelope, In International Journal of Computer Vision, vol 42, number 3, pages 145-175, 2001.
  8. K. E. A. van de Sande, T. Gevers, and C. G. M. Snoek. A comparison of color features for visual concept clas- sification. In ACM International Conference on Image and Video Retrieval, pages 141-150, 2008.
  9. Ivan Laptev, On space-time interest points, Int. J. Comput. Vision, 64:107-123, September 2005.
  10. A. Benoit, A. Caplier, B. Durette, and J. Herault. Us- ing Human Visual System Modeling for Bio-inspired Low Level Image Processing, In Computer Vision and Image Understanding, vol. 114, no. 7, pp. 758-773, 2010.
  11. S. T. Strat, A. Benoit, P. Lambert and A. Caplier, Retina Enhanced SURF Descriptors for Spatio- Temporal Concept Detection, In Multimedia Tools ans Applications, to appear, 2012.
  12. S. Paris, H .Glotin, Pyramidal Multi-level Features for the Robot Vision@ICPR 2010 Challenge, In 20th Inter- national Conference on Pattern Recognition, pp.2949- 2952, 2010
  13. B. Safadi, G. Quénot. Evaluations of multi-learners approaches for concepts indexing in video documents. In RIAO, Paris, France, April 2010.
  14. Georges Quénot. KNNLSB: K Nearest Neighbors Linear Scan Baseline, 2008. Software available at http://mrim.imag.fr/georges.quenot/freesoft/ knnlsb/index.html.
  15. Delezoide et al. IRIM at TRECVID 2011: Semantic In- dexing and Multimedia Instance Search, In Proceedings of the TRECVID 2011 workshop, Gaithersburg, USA, 5-7 Dec. 2011.
  16. Safadi et al. Quaero at TRECVID 2011: Semantic Indexing and Collaborative Annotation, In Proceedings of the TRECVID 2012 workshop, Gaithersburg, USA, 26-28 Nov. 2011.
  17. Nicolas Ballas, Benjamin Labbé, Hervé Le Borgne, Ay- men Shabou CEA LIST at TRECVID 2012: Semantic Indexing and Instance Search, In Proceedings of the TRECVID 2012 workshop, Gaithersburg, USA, 26-28 Nov. 2012.
  18. Stéphane Ayache and Georges Quénot, Video Corpus Annotation using Active Learning, In 30th European Conference on Information Retrieval (ECIR'08), Glas- gow, Scotland, 30th March -3rd April, 2008.
  19. D. Gorisse et al., IRIM at TRECVID 2010: High Level Feature Extraction and Instance Search. In TREC Video Retrieval Evaluation workshop, Gaithers- burg, MD USA, November 2010.
  20. Alice Porebski, Color texture feature selection for im- age classification. Application to flaw identification on decorated glasses printing by a silk-screen process. Phd thesis, Université Lille 1, Sciences et Technologies, Nov. 2009
  21. V. D. Blondel and J. Guillaume and R. Lambiotte and E. Lefebvre, Fast Unfolding of Community Hierarchies in Large Networks, In Computing Research Repository, abs/0803.0, 2008.
  22. B. Safadi, G. Quénot. Re-ranking by Local Re-scoring for Video Indexing and Retrieval, CIKM 2011: 20th ACM Conference on Information and Knowledge Man- agement, Glasgow, Scotland, oct 2011.
  23. J. Sivic and A. Zisserman. Video google: a text retrieval approach to object matching in videos. In ICCV'03, volume 2, pages 1470-1477, 2003.
  24. H. Bay, Herbert, T.Tuytelaars,and L. Van Gool. SURF: Speeded Up Robust Features, In ECCV 2006, pp 404-417, 2006.
  25. R. Vieux, J. Benois-Pineau, and J.-Ph. Domenger. Content based image retrieval using bag of region. In MMM 2012 -The 18th International Conference on Multimedia Modeling, 2012.
  26. P. F. Felzenszwalb and D. P. Huttenlocher. Efficient graph-based image segmentation. International Journal of Computer Vision, 59:167-181, 2004.
  27. Emilie Dumont and Bernard Merialdo. video summarization and evaluation. Multimedia Tools and Applications, Springer, Vol.48, No1, May 2010, 2010.
  28. Edwin Lughofer. Extensions of vector quantization for incremental clustering. Pattern Recognition, 41:995- 1011, 2008.
  29. S. T. Strat, A. Benoit, H. Bredin, G. Quénot and P. Lambert. Hierarchical Late Fusion for Concept Detec- tion in Videos. In ECCV workshop on Information Fusion in Computer Vision for Concept Recognition, Firenze, Italy, 13 Oct. 2012.
  30. A. Shabou and H. Le Borgne. Locality-constrained and spatially regularized coding for scene categoriza- tion, In IEEE Conference on Computer Vision and Pattern Recognition, pp. 3618-3625, 2012.
  31. A. Levinshtein, A. Stere, K. N. Kutulakos, D. J. Fleet, S. J. Dickinson, and Kaleem. Siddiqi. Turbopixels: Fast superpixels using geometric flows. In IEEE Trans. Pat- tern Anal. Mach. Intell., 31(12):2290-2297, December 2009.
  32. C. Zhu, C.-E. Bichot, L. Chen. Color orthogonal lo- cal binary patterns combination for image region de- scription. In Technical Report, LIRIS UMR5205 CNRS, Ecole Centrale de Lyon.
  33. D.G Lowe. Distinctive image features from scale- invariant keypoints. International Journal of Computer Vision, 60:91-110, 2004
  34. R. Hartley, and A. Zisserman. Multiple view geometry in computer vision. Cambridge Univ Press, 2000
  35. R. 0. Stehling, M. A. Nascimento, and A.X. Falcão. A compact and efficient image retrieval approach based on border/interior pixel classification In 11th Interna- tional Conference on Information and Knowledge Man- agement 2002
  36. S. Poullot, M. Crucianu, and S. Satoh Indexing lo- cal configurations of features for scalable content-based video copy detection In 1st ACM workshop on Large- Scale Multimedia Retrieval and Mining (LS-MMRM'09) New York, NY, USA, 2009
  37. B. Mansencal, J. Benois-Pineau, R. Vieux and J.-Ph. Domenger Search of objects of interest in videos In 10th Workshop on Content-Based Multimedia Indexing Annecy, France, 2012
  38. E. Fox and J. Shaw Combination of Multiple searches In Proceedings of the 2nd Text Retrieval Conference Gaithersburg, USA, 1994
  39. G. Csurka and S. Clinchant An empirical study of fu- sion operators for multimodal image retrieval In 10th Workshop on Content-Based Multimedia Indexing An- necy, France, 2012