Academia.eduAcademia.edu

Outline

Computational studies of membrane channels

2004

https://doi.org/10.1016/J.STR.2004.06.013

Abstract

channel properties and needs to be described compu-New York, New York 10021 tationally since no genuine structure exists. With their 2 Beckman Institute for Advanced Science ability to go beyond static structures and include the and Technology membrane environment, molecular dynamics (MD) sim-University of Illinois at Urbana-Champaign ulations based on detailed atomic models (McCammon 405 North Mathews et al., 1977) are now playing an increasingly important Urbana, Illinois 61801 role in shaping our view of how membrane channels carry out their function. MD simulations, together with a number of specific computational techniques (see Methods, below), offer a unique route for interpreting The determination of the structure of several members

References (46)

  1. Grayson, P., Tajkhorshid, E., and Schulten, K. (2003). Mechanisms
  2. Kollman, P.A. (1993). Free energy calculations: applications to chemical and biochemical phenomena. Chem. Rev. 93, 2395-2417. of selectivity in channels and enzymes studied with interactive mo- lecular dynamics. Biophys. J. 85, 36-48.
  3. Kuo, A., Gulbis, J.M., Antcliff, J.F., Rahman, T., Lowe, E.D., Zimmer, Guidoni, L., Torre, V., and Carloni, P. (1999). Potassium and sodium J., Cuthbertson, J., Ashcroft, F.M., Ezaki, T., and Doyle, D.A. (2003). binding to the outer mouth of the K ϩ channel. Biochemistry 38, Crystal structure of the potassium channel KirBac1.1 in the closed 8599-8604. state. Science 300, 1922-1926.
  4. Gullingsrud, J., and Schulten, K. (2003). Gating of MscL studied by Laine, M., Papazian, D.M., and Roux, B. (2004). Critical assessment steered molecular dynamics. Biophys. J. 85, 2087-2099. of a proposed model of Shaker. FEBS Lett. 564, 257-263.
  5. Heginbotham, L., LeMasurier, M., Kolmakova-Partensky, L., and LeMasurier, M., Heginbotham, L., and Miller, C. (2001). KcsA: it's a Miller, C. (1999). Single streptomyces lividans K(ϩ) channels. Func- potassium channel. J. Gen. Physiol. 118, 303-314. tional asymmetries and sidedness of proton activation. J. Gen. Phys- Lopez, C.F., Nielsen, S.O., Moore, P.B., and Klein, M.L. (2004). Un- iol. 114, 551-560. derstanding nature's design for a nanosyringe. Proc. Natl. Acad.
  6. Heymann, J.B., and Engel, A. (1999). Aquaporins: phylogeny, struc- Sci. USA 101, 4431-4434.
  7. ture and physiology of water channels. News Physiol. Sci., 14, Lu, D., Grayson, P., Tajkhorshid, E., and Schulten, K. (2003). Glycerol 187-194. conductance and physical asymmetry of the Escherichia coli glyc- Hodgkin, A.L., and Huxley, A.F. (1952). A quantitative description of erol facilitator GlpF. Biophys. J. 85, 2977-2987. membrane current and its application to conduction and excitation Luzhkov, V.B., and A ˚qvist, J. (2001). K(ϩ)/Na(ϩ) selectivity of the of nerve. J. Physiol. (Lond.) 117, 500-544. KcsA potassium channel from microscopic free energy perturbation Hodgkin, A.L., and Keynes, R.D. (1955). The potassium permeability calculations. Biochim. Biophys. Acta 1548, 194-202. of a giant nerve fibre. J. Physiol. (Lond.) 128, 61-88.
  8. Mackay, D.H., Berens, P.H., and Wilson, K.R. (1984). Structure and Hummer, G., and Szabo, A. (2001). Free energy reconstruction from dynamics of ion transport through Gramicidin A. Biophys. J. 46, nonequilibrium single-molecule pulling experiments. Proc. Natl. 229-248.
  9. Acad. Sci. USA 98, 3658-3661.
  10. MacKerell, A.D., Jr., Bashford, D., Bellot, M., Dunbrack, R.L., Hummer, G., Rasaiah, J.C., and Noworyta, J.P. (2001). Water con- Evanseck, J.D., Field, M.J., Fischer, S., Gao, J., Guo, H., Joseph- duction through the hydrophobic channel of a carbon nanotube. McCarthy, D., et al. (1998). All-atom empirical potential for molecular Nature 414, 188-190. modeling and dynamics studies of proteins. J. Phys. Chem. B 102, 3586-3616.
  11. Humphrey, W., Dalke, A., and Schulten, K. (1996). VMD: visual molec- ular dynamics. J. Mol. Graph. 14, 33-38.
  12. McCammon, J.A., and Straatsma, T.P. (1992). Alchemical free en- ergy simulation. Annu. Rev. Phys. Chem. 43, 407.
  13. Ilan, B., Tajkhorshid, E., Schulten, K., and Voth, G.A. (2004). The mechanism of proton exclusion in aquaporin channels. Proteins 55, McCammon, J.A., Gelin, B.R., and Karplus, M. (1977). Dynamics of 223-228. folded proteins. Nature 267, 585-590.
  14. Jarzynski, C. (1997). Non-equilibrium equality for free energy differ- Murata, K., Mitsuoka, K., Hirai, T., Walz, T., Agre, P., Heymann, J.B., ences. Phys. Rev. Lett. 78, 2690.
  15. Engel, A., and Fujiyoshi, Y. (2000). Structural determinants of water permeation through aquaporin-1. Nature 407, 599-605.
  16. Javot, H., and Maurel, C. (2002). The role of aquaporins in root water uptake. Ann. Bot. (Lond.) 90, 301-313.
  17. Park, S., and Schulten, K. (2004). Calculating potentials of mean force from steered molecular dynamics simulations. J. Chem. Phys.
  18. Javot, H., Lauvergeat, V., Santoni, V., Martin-Laurent, F., Guclu, J., 120, 5946-5961.
  19. Vinh, J., Heyes, J., Franck, K.I., Schaffner, A.R., Bouchez, D., et al. (2003). Role of a single aquaporin isoform in root water uptake. Plant Perozo, E., Cortes, D.M., and Cuello, L.G. (1999). Structural rear- Cell 15, 509-522. rangements underlying K ϩ -channel activation gating. Science 285, 73-78.
  20. Jensen, M.O., Tajkhorshid, E., and Schulten, K. (2001). The mecha- nism of glycerol conduction in aquaglyceroporins. Structure Pohl, P., Saparov, S.M., Borgnia, M.J., and Agre, P. (2001). Highly (Camb.). 9, 1083-1093. selective water channel activity measured by voltage clamp: analy- sis of planar lipid bilayers reconstituted with purified AqpZ. Proc.
  21. Jensen, M.O., Park, S., Tajkhorshid, E., and Schulten, K. (2002). Natl. Acad. Sci. USA 98, 9624-9629.
  22. Energetics of glycerol conduction through aquaglyceroporin GlpF. Proc. Natl. Acad. Sci. USA 99, 6731-6736.
  23. Pome `s, R., and Roux, B. (1996). Structure and dynamics of a proton wire: a theoretical study of H ϩ translocation along the single-file
  24. Jensen, M.O., Tajkhorshid, E., and Schulten, K. (2003). Electrostatic water chain in the gramicidin A channel. Biophys. J. 71, 19-39. tuning of permeation and selectivity in aquaporin water channels. Biophys. J. 85, 2884-2899.
  25. Preston, G.M., Carroll, T.P., Guggino, W.B., and Agre, P. (1992). Appearance of water channels in Xenopus oocytes expressing red
  26. Jiang, Y., Lee, A., Chen, J., Cadene, M., Chait, B.T., and MacKinnon, cell CHIP28 protein. Science 256, 385-387.
  27. R. (2002a). Crystal structure and mechanism of a calcium-gated potassium channel. Nature 417, 515-522.
  28. Roux, B. (2002). Theoretical and computational models of ion chan- nels. Curr. Opin. Struct. Biol. 12, 182-189.
  29. Jiang, Y., Lee, A., Chen, J., Cadene, M., Chait, B.T., and MacKinnon, R. (2002b). The open pore conformation of potassium channels. Roux, B., and MacKinnon, R. (1999). The cavity and pore helices Nature 417, 523-526. in the KcsA K ϩ channel: electrostatic stabilization of monovalent cations. Science 285, 100-102.
  30. Jiang, Y., Lee, A., Chen, J., Ruta, V., Cadene, M., Chait, B.T., and MacKinnon, R. (2003). X-ray structure of a voltage-dependent K ϩ Roux, B., Berne `che, S., and Im, W. (2000). Ion channels, permeation channel. Nature 423, 33-41. and electrostatics: insight into the function of KcsA. Biochemistry 39, 13295-13306.
  31. Johnson, J.P., Jr., and Zagotta, W.N. (2001). Rotational movement during cyclic nucleotide-gated channel opening. Nature 412, Savage, D.F., Egea, P.F., Robles-Colmenares, Y., Iii, J.D., and 917-921.
  32. Stroud, R.M. (2003). Architecture and selectivity in aquaporins: 2.5 A X-ray structure of aquaporin Z. PLoS Biol. 1(3): e72 DOI:10.1371/ Kale, L., Skeel, R., Bhandarkar, M., Brunner, R., Gursoy, A., Krawetz, journal.pbio.0000072.
  33. N., Phillips, J., Shinozaki, A., Varadarajan, K., and Schulten, K. (1999). NAMD2: greater scalability for parallel molecular dynamics. J. Schlenkrich, M.J., Brickmann, J., MacKerell, A.D, Jr., and Karplus, Comb. Chem. 151, 283-312.
  34. M. (1996). An empirical potential energy function for phospholipids: criteria for parameters optimization and applications. In Biological King, L.S., and Yasui, M. (2002). Aquaporins and disease: lessons Membranes. A Molecular Perspective from Computation and Experi- from mice to humans. Trends Endocrinol. Metab. 13, 355-360. ment, K.M. Merz and B. Roux, eds. (Boston: Birkhauser), pp. 31-81.
  35. Kirkwood, J.G. (1935). Statistical mechanics of fluid mixtures. J. Chem. Phys. 3, 300-313.
  36. Shrivastava, I.H., and Sansom, M.S. (2000). Simulations of ion per- meation through a potassium channel: molecular dynamics of KcsA in a phospholipid bilayer. Biophys. J. 78, 557-570.
  37. Sui, H., Han, B.G., Lee, J.K., Walian, P., and Jap, B.K. (2001). Struc- tural basis of water-specific transport through the AQP1 water chan- nel. Nature 414, 872-888.
  38. Tajkhorshid, E., Nollert, P., Jensen, M.O., Miercke, L.J., O'Connell, J., Stroud, R.M., and Schulten, K. (2002). Control of the selectivity of the aquaporin water channel family by global orientational tuning. Science 296, 525-530.
  39. Tajkhorshid, E., Aksimentiev, A., Balabin, I., Gao, M., Isralewitz, B., Phillips, J.C., Zhu, F., and Schulten, K. (2003). Large scale simulation of protein mechanics and function. Adv. Protein Chem. 66, 195-247.
  40. Tieleman, D.P., Berendsen, H.J., and Sansom, M.S. (2001). Voltage- dependent insertion of alamethicin at phospholipid/water and oc- tane/water interfaces. Biophys. J. 80, 331-346.
  41. Torrie, G.M., and Valleau, J.P. (1974). Monte Carlo free energy esti- mates using non-Boltzmann sampling: application to the sub-critical Lennard-Jones fluid. Chem. Phys. Lett. 28, 578-581.
  42. Uehlein, N., Lovisolo, C., Siefritz, F., and Kaldenhoff, R. (2003). The tobacco aquaporin NtAQP1 is a membrane CO2 pore with physio- logical functions. Nature 425, 734-777.
  43. Zhou, M., and MacKinnon, R. (2004). A mutant KcsA K(ϩ) channel with altered conduction properties and selectivity filter ion distribu- tion. J. Mol. Biol. 338, 839-846.
  44. Zhou, Y., Morais-Cabral, J.H., Kaufman, A., and MacKinnon, R. (2001). Chemistry of ion coordination and hydration revealed by a K ϩ channel-Fab complex at 2.0 A ˚resolution. Nature 414, 43-48.
  45. Zhu, F., Tajkhorshid, E., and Schulten, K. (2004). Theory and simula- tion of water permeation in aquaporin-1. Biophys. J. 86, 50-57.
  46. Zwanzig, R.W. (1954). High temperature equation of state by a per- turbation method. J. Chem. Phys. 22, 1420-1426.