Academia.eduAcademia.edu

Outline

The ionic selectivity of large protein ion channels

https://doi.org/10.2436/20.7010.01.31

Abstract

Ion channels are proteins that are embedded within the lipid bilayer membranes of cells and some viruses, where their physiological function is to regulate the passage of small charged molecules in and out of the cell or its various organelles . Because of lipid dielectric properties, an ion needs 20 times more energy than an uncharged water molecule to pass through a biological membrane. This is why ion channels and pumps are necessary to transport charged molecules through cell membranes. Ion channels are mostly pore opening proteins which are fractions of a nanometre in radius and a few nanometres long. The simplest way to picture them is as hollow proteins that allow the transit of charged and neutral solutes, driven either by a concentration gradient or by the electric potential difference between the inner and the outer side of the membrane; or by both simultaneously. There are several families and sub-families of ion channels and new varieties are constantly reported. They can be classified by their permeability properties, their activation mechanism or simply by their size. However, these criteria are often interrelated. For instance, channels that perform the very specific function of translocating say, Ca 2+ ions, display a narrow aqueous pore, while channels that allow permeation by cations and anions are usually wider. A "narrow" protein channel pore is comparable to the unhydrated size of small inorganic ions like K + and Na + . This review focuses on the selective properties of wide channels, collectively known as mesoscopic channels because of their size. Transport through these channels is passive and multiionic, and it is mainly regulated by electrostatic interactions between protein ionizable residues and the permeating ions. Examples of mesoscopic channels are bacterial porins like OmpF from E. coli , the voltage-dependent anion channel (VDAC) of the mitochondria outer membrane [13], pore-opening toxins like the alphahemolysin channel secreted by S. Aureus and antibiotic peptides like Alamethicin . Most of them share structural motifs: for example, transmembrane pores consist largely Resum Els canals iònics de gran amplada i de conductància alta exerceixen una funció molt important en el cicle de vida de les cèllules. Permeten l'intercanvi de soluts neutres i carregats a través de la membrana cel·lular i regulen l'aportació de nutrients i la sortida de deixalles. Per a realitzar aquesta funció, els canals han de discriminar entre diferents espècies iòniques. Els canals mesoscòpics permeten el transport multiiònic passiu i generalment presenten una selectivitat moderada respecte a ions positius i negatius. Aquí revisem les metodologies més usades per a estimar quantitativament la selectivitat iònica. Entre elles, la mesura del potencial elèctric necessari per a anul·lar el corrent elèctric a través del canal en presència d'un gradient de concentració, cosa que es coneix com a potencial de corrent zero. Assenyalem els factors clau que cal tenir en compte per a una interpretació física correcta d'aquests experiments d'electrofisiologia.

References (49)

  1. Aguilella V.M., and S.M. Bezrukov. (2001). Alamethicin channel conductance modified by lipid charge. Eur. Bio- phys. J. 30:233-241.
  2. Aguilella-Arzo M., J.J. García-Celma, J. Cervera, A. Al- Contrib. Sci. 4 (1), 2008
  3. Aguilella, Alcaraz caraz and V.M. Aguilella. (2007). Electrostatic properties and macroscopic electrodiffusion in OmpF porin and mu- tants. Bioelectrochemistry 71:22-29.
  4. Aidley D.J., and P.R. Stanfield. (1996). Ion Channels: Molecules in Action. Cambridge University Press. New York.
  5. Aksimentiev A., and K. Schulten. (2005). Imaging alpha- hemolysin with molecular dynamics: Ionic conductance, osmotic permeability and the electrostatic potential map. Biophys. J. 88:3745-3761.
  6. Alcaraz A., E.M. Nestorovich, M. Aguilella-Arzo, V.M. Aguilella and S.M. Bezrukov. (2004). Salting out the ionic selectivity of a wide channel: The asymmetry of OmpF. Biophys. J. 87:943-957.
  7. Alcaraz A., P. Ramírez, E. García-Giménez, M.L. López, A. Andrio and V.M. Aguilella. (2006). A pH-tunable na- nofluidic diode: electrochemical rectification in a reconsti- tuted single ion channel. J. Phys. Chem. B. 110:21205- 21211.
  8. Ashcroft F., D. Benos, F. Bezanilla, K. Chien, S. Choe, D. Clapham, D. Dougherty, M. Lazdunski, I. Levitan, R. Lewis, et al. (2004). The state of ion channel research in 2004. Nature Reviews Drug Discovery 3:239-278.
  9. Bezrukov S.M., and I. Vodyanoy. (1993). Probing ala- methicin channels with water-soluble polymers. Effect on conductance of channel states. Biophys. J. 64:16-25.
  10. Brooks B.R., R.E. Bruccoleri, B.D. Olafson, D.J. States, S. Swaminathan, and M. Karplus. (1983). CHARMM: a program for macromolecular energy minimization and dy- namics calculations. J. Comp. Chem. 4:187-217.
  11. Buck R.P. (1984). Kinetics of bulk and interfacial ionic motion-microscopic bases and limits for the Nernst- Planck equation applied to membrane systems. J. Mem- brane Sci. 17:1-62.
  12. Cafiso D.S. (1994). Alamethicin: A peptide model for voltage gating and protein-membrane interactions. Annu Rev Biophys Biomol Struct 23:141-165.
  13. Chung S-H. and S. Kuyucak. (2002). Recent Advances in ion channel research. Biochim. Biophys. Acta 1565: 267-286.
  14. Colombini M., E. Blachly-Dyson, and M. Forte. (1996). VDAC, a channel in the outer mitochondrial membrane. In: "Ion Channels" Vol. 4 (Narahashi, T. ed.) pp 169-202. Plenum Publishing Corp., New York, NY.
  15. Cowan S.W., R.M. Garavito, J.N. Jansonius, J.A. Jenkins, R. Karlsson, N. Konig, E.F. Pai, R.A. Pauptit, P.J. Riz- kallah, J.P. Rosenbusch, G. Rummel, and T. Schirmer. (1995). The structure of OmpF porin in a tetragonal crys- tal form. Structure. 3:1041-1050.
  16. Delcour A. H. (2003). Solute uptake through general porins. Front. Biosci. 8:d1055-d1071.
  17. Domene C., S. Haider, and M.S. Sansom. (2003). Ion channel structures: a review of recent progress. Curr. Opin. Drug Discov. Devel. 6:611-619.
  18. Eisenberg R.S. (1996). Computing the field in proteins and channels. J. Membrane Biol. 150:1-25.
  19. Eyring H. (1936). Viscosity, plasticity and diffusion as ex- amples of absolute reaction rates. J. Chem. Phys. 4:283- 291.
  20. Gillespie D., and R.S. Eisenberg. (2002). Physical de- scriptions of experimental selectivity measurements. Eur. Biophys. J. 31:454-466.
  21. Goldman D. (1943). Potential, impedance and rectifica- tion in membranes. J. Gen. Physiol. 27:37-60.
  22. Gouaux E. (1998). α-Hemolysin from Staphylococcus aureus: An Archetype of β-Barrel, Channel-Forming To- xins. J. Structural Biol. 121:110-122.
  23. Grosberg A.Yu., T.T. Nguyen, and B.I. Shklovskii. (2002). The physics of charge inversion in chemical and biologi- cal systems. Rev. Mod. Phys. 74:329-345.
  24. Hall J.E., I. Vodyanoy, T.M. Balasubramanian, and G.R. Marshall. (1984). Alamethicin. A rich model for channel behavior. Biophys. J. 45:233-247.
  25. Hille B. (2001). Ionic Channels of Excitable Membranes, 3 rd ed. (Sinauer, Sunderland, Mass.).
  26. Hodgkin A., and B. Katz. (1949). The effect of sodium ions on the electrical activity of the giant axon of the squid. J. Physiol. 108:37-77.
  27. Karshikoff A., V. Spassov, S.W. Cowan, R. Ladenstein, and T. Schirmer. (1994). Electrostatic properties of two porin channels from Escherichia coli. J. Mol. Biol. 240: 372-384.
  28. Krasilnikov O.V., M.F.P. Capistrano, L.N. Yuldasheva, R.A. Nogueira. (1997). Influence of Cys-130 S-aureus alpha- toxin on planar lipid bilayer and erythrocyte membranes. J. Membrane Biol. 156:157-172.
  29. Kurnikova M.G., R.D. Coalson, P. Graf, and A. Nitzan. (1999). A lattice relaxation algorithm for 3D Poisson-Nernst- Planck theory with application to ion transport through the gramicidin A channel. Biophys. J. 76:642-656.
  30. Kuyucak S., O.S. Andersen, and S.-H. Chung. (2001). Models of permeation in ion channels. Rep. Prog. Phys. 64:1427-1472.
  31. Lakshminarayanaiah N. (1984). Equations of Membrane Biophysics. Academic Press, New York.
  32. Lindahl E., B. Hess, and D. van der Spoel. (2001). GROMACS 3.0: a package for molecular simulation and trajectory analysis. J. Mol. Mod. 7:306-317.
  33. Lyklema J. (2006). Overcharging, charge reversal: Chem- istry or physics? Colloids and Surfaces A: Physicochem. Eng. Aspects 291:3-12.
  34. Mafé S., J. Pellicer and V.M. Aguilella. (1986). The Gold- man constant field assumption: significance and applica- bility conditions. Ber. Bunsenges. Phys. Chem. 90:476- 479.
  35. Mafé S., V.M. Aguilella and J. Pellicer. (1988). A numerical approach to ionic transport through charged membranes. J. Comput. Phys. 75:1-14.
  36. McLaughlin S.G.A., G. Szabo, G. Eisenman, and S.M. Ciani. (1970). Surface charge and the conductance of phospholipid membranes. Proc. Natl. Acad. Sci. U.S.A. 67:1268-1275.
  37. Montal M., and P. Mueller. (1972). Formation of biomo- lecular membranes from lipid monolayers and study of their electrical properties. Proc. Natl. Acad. Sci. U.S.A. 69:3561-3566.
  38. Mueller P., D.O. Rudin, H.T. Tien and W.C. Wescott. (1962). Reconstitution of cell membrane structure in vitro and its transformation into an excitable system. Nature (London) 194: 979-980.
  39. Nikaido H. (2003). Molecular Basis of bacterial outer membrane permeability revisited. Microbiol. Mol. Biol. Rev. 67:593-656.
  40. Ninham B.W., and V.A. Parsegian. (1971). Electrostatic potential between surfaces bearing ionizable groups in ionic equilibrium with physiological saline solution. J. Theor. Biol. 31:405-428.
  41. Rostovtseva T.K., V.M. Aguilella, I. Vodyanoy, S.M. Bez- rukov, and V.A. Parsegian. (1998). Membrane surface charge titration probed by Gramicidin A channel. Bio- phys. J. 75:1783-1792.
  42. Roux B. (2002). Theoretical and computational models of ion channels. Curr. Op. Struct. Biol. 12:182-189.
  43. Roux B., T. Allen, S. Bernèche, and W. Im. (2004). Theo- retical and computational models of biological ion chan- nels. Q. Rev. Biophys. 37:15-103.
  44. Saint N., K.L. Lou, C. Widmer, M. Luckey, T. Schirmer, and J.P. Rosenbusch. (1996). Structural and functional characterization of OmpF porin mutants selected for lar- ger pore size. 2. Functional characterization. J. Biol. Chem. 271:20676-20680.
  45. Song J. M., C.A.S.A. Minetti, M.S. Blake and M. Colom- bini. (1999). Meningococcal PorA/C1, a channel that combines high conductance and high selectivity. Bio- phys. J. 76:804-813.
  46. Song L.Z., M.R. Hobaugh, C. Shustak, S. Cheley, H. Bayley, and E. Gouaux. (1996). Structure of Staphylococ- cal alpha-hemolysin, heptameric transmembrane pore. Science 274:1859-1866.
  47. Tieleman P., P.C. Biggin, G.R. Smith, and M. S. P. Sansom. (2001). Simulation approaches to ion channel structure-function relationships. Q. Rev. Biophys. 4:473- 561.
  48. Van Gelder P., F. Dumas, and M. Winterhalter. (2000). Un- derstanding the function of bacterial outer membrane channels by reconstitution into black lipid membranes. Biophys. Chem. 85:153-167.
  49. Weiner S.J., P.A. Kollman, D.A. Case, U.C. Singh, C. Ghio, G. Alagona, S. Profeta, and P. Weiner. (1984). A new force field for molecular mechanical simulation of nucleic acids and proteins. J. Am. Chem. Soc. 106:765- 784.