Academia.eduAcademia.edu

Outline

Right-Handed Vector V and Axial A Couplings in Weak Interactions

Acta Physica Polonica Series B

Abstract

In this paper a scenario admitting the participation of the righthanded vector V R and axial A R couplings with the conservation of the left-handed standard (V, A) L couplings is considered. The research is based on the muon capture by proton. We consider muon capture at the level of the Fermi theory, whose hamiltonian describes the four-fermion point (contact) interaction. Neutrinos are assumed to be massive and to be Dirac fermions. We propose neutrino observables, it means transverse components of the neutrino polarization, both Todd and T -even. That would be a test verifying the participation of the (V, A) R couplings in muon capture. The measurements of nuclear observables and of longitudinal neutrino polarization do not offer such possibilities because of the suppressing of interferences between the (V, A) L and (V, A) R couplings caused by the neutrino mass. Using the current data from µ-decay and inverse µ-decay, the magnitude of effects coming from the transverse components of the neutrino polarization can be determined. Our considerations are model-independent. We give the lower bound of 305 GeV on the mass of the right-handed gauge boson. This limit is compatible with the current bounds on the mass of the W R received from the weak interaction processes at low energy.

References (39)

  1. S. L. Glashow, Nucl. Phys. 22, 579 (1961).
  2. S. Weinberg, Phys. Rev. Lett. 19, 1264 (1967).
  3. A. Salam, Elementary Particle Theory, N. Svartholm (Almquist and Wiksells), Stockholm 1969, p. 367.
  4. H. Frauenfelder et al., Phys. Rev. 106, 386 (1957).
  5. M. Goldhaber et al., Phys. Rev. 109, 1015 (1958).
  6. C.S. Wu et al., Phys. Rev. 105, 1413 (1957); 106, 1361 (1957).
  7. R.L. Garwin et al., Phys. Rev. 105, 1415 (1957).
  8. R. P. Feynman, M. Gell-Mann, Phys. Rev. 109, 193 (1958).
  9. E. C. G. Sudarshan, R. E. Marshak, Phys. Rev. 109, 1860 (1958).
  10. C.S. Wu, S.A. Moszkowski, Beta decay, Wiley, New York 1966, p. 163.
  11. K. Mursula et al., Nucl. Phys. B 219, 321 (1983).
  12. J.C. Pati, A. Salam, Phys. Rev. Lett. 31, 661, (1973);
  13. Phys. Rev. D 10, 275 (1974);
  14. R.N. Mohapatra, J.C. Pati, Phys. Rev. D 11, 566, 2558 (1974);
  15. G. Senjanović, R.N. Mohapatra, Phys. Rev. D 12 1502 (1975);
  16. R.N. Mohapatra, R.E. Marshak, Phys. Lett. B 91 222 (1980).
  17. M. A. B. Bég et al., Phys. Rev. Lett. 38, 1252 (1977).
  18. P. Herczeg, Phys. Rev. D 34, 3449 (1986).
  19. F. Abe et al., Phys. Rev. Lett. 74, 2900 (1995).
  20. S. Abachi et al., Phys. Rev. Lett. 76, 3271 (1996).
  21. G. Beall et al., Phys. Rev. Lett. 48, 848 (1982).
  22. A. Jodidio et al., Phys. Rev. D 34, 1967 (1986).
  23. J. Maalampi et al., Nucl. Phys. B 207, 233 (1982).
  24. N.B. Shul'gina, Phys. Rev. Lett. 73, 2658 (1994).
  25. N. Severijns et al., Nucl. Phys. A 629, 423c (1998).
  26. Review of Particle Physics, C. Caso et al., Eur. Phys. J. C 3, 1 (1998).
  27. M. Zra lek et al., Phys. Rev. D 59, 013010 (1999).
  28. F. I. Olness et al., Phys. Rev. D 30, 1034 (1984).
  29. P. Langacker et al., Phys. Rev. D 40, 1569 (1989).
  30. W. Fetscher, at al., Phys. Lett. B 173, 102 (1986).
  31. T. D. Lee, C. N. Yang, Phys. Rev. 104, 254 (1956).
  32. J. Sromicki, Institut für Teilchenphysik, ETH Zürich, (1994).
  33. B. Armbruster et al., Phys. Rev. Lett. 81, 520 (1998).
  34. M. Abe, et al., Phys. Rev. Lett. 83, 4253 (1999).
  35. M. Morita, Beta decay and muon capture, W. A. Benjamin, INC., Read- ing, Massachusetts 1973, p. 330.
  36. C.H. Johnson et al., Phys. Rev. 132, 1149 (1963).
  37. E. Church et al., FERMILAB-P-0898, (1997).
  38. E898 Collaboration, R. Stefanski, FERMILAB-CONF-98-141-E, (1998), Talk given at International Workshop on JHF Science (JHF 98), Tsukuba, Japan, 4-7 Mar 1998.
  39. A. O. Bazarko, Talk presented at American Physical Society (APS) Meeting of the Division of Particles and Fields (DPF 99), Los Angeles, CA, 5-9 Jan 1999, hep-ex/9906003.