Academia.eduAcademia.edu

Outline

Phase-change random access memory: A scalable technology

2008, IBM Journal of Research and Development

https://doi.org/10.1147/RD.524.0465

Abstract

Nonvolatile RAM using resistance contrast in phase-change materials [or phase-change RAM (PCRAM)] is a promising technology for future storage-class memory. However, such a technology can succeed only if it can scale smaller in size, given the increasingly tiny memory cells that are projected for future technology nodes (i.e., generations). We first discuss the critical aspects that may affect the scaling of PCRAM, including materials properties, power consumption during programming and read operations, thermal cross-talk between memory cells, and failure mechanisms. We then discuss experiments that directly address the scaling properties of the phase-change materials themselves, including studies of phase transitions in both nanoparticles and ultrathin films as a function of particle size and film thickness. This work in materials directly motivated the successful creation of a series of prototype PCRAM devices, which have been fabricated and tested at phase-change material cross-sections with extremely small dimensions as low as 3 nm • 20 nm. These device measurements provide a clear demonstration of the excellent scaling potential offered by this technology, and they are also consistent with the scaling behavior predicted by extensive device simulations. Finally, we discuss issues of device integration and cell design, manufacturability, and reliability.

References (76)

  1. S. R. Ovshinsky, ''Reversible Electrical Switching Phenomena in Disordered Structures,'' Phys. Rev. Lett. 21, No. 20, 1450-1455 (1968).
  2. N. Yamada, E. Ohno, K. Nishiuchi, and N. Akahira, ''Rapid- Phase Transitions of GeTe-Sb 2 Te 3 Pseudobinary Amorphous Thin Films for an Optical Disk Memory,'' J. Appl. Phys. 69, No. 5, 2849-2856 (1991).
  3. J. Tominaga, T. Kikukawa, M. Takahashi, and R. T. Phillips, ''Structure of the Optical Phase Change Memory Alloy, Ag-V-In-Sb-Te, Determined by Optical Spectroscopy and Electron Diffraction,'' J. Appl. Phys. 82, No. 7, 3214-3218 (1997).
  4. A. V. Kolobov, P. Fons, A. I. Frenkel, A. L. Ankudinov, J. Tominaga, and T. Uruga, ''Understanding the Phase- Change Mechanism of Rewritable Optical Media,'' Nature Mater. 3, No. 3, 703-707 (2004).
  5. S. Hudgens and B. Johnson, ''Overview of Phase-change Chalcogenide Nonvolatile Memory Technology,'' MRS Bull. 29, No. 11, 829-832 (2004).
  6. Y. C. Chen, C. T. Rettner, S. Raoux, G. W. Burr, S. H. Chen, R. M. Shelby, M. Salinga, et al., ''Ultra-Thin Phase-Change Bridge Memory Device Using GeSb,'' International Electron Devices Meeting, San Francisco, CA, December 1-13, 2006, pp. 777-780.
  7. A. Pirovano, A. L. Lacaita, A. Benvenuti, F. Pellizzer, and R. Bez, ''Electronic Switching in Phase-Change Memories,'' IEEE Trans. Electr. Devices 51, No. 3, 452-459 (2004).
  8. D. Adler, H. K. Henisch, and N. Mott, ''The Mechanism of Threshold Switching in Amorphous Alloys,'' Rev. Mod. Phys. 50, No. 2, 209-220 (1978).
  9. A. Redaelli, A. Pirovano, F. Pellizzer, A. L. Lacaita, D. Ielmini, and R. Bez, ''Electronic Switching Effect and Phase-Change Transition in Chalcogenide Materials,'' IEEE Electron Device Lett. 25, No. 10, 684-686 (2004).
  10. D. Ielmini, A. L. Lacaita, and D. Mantegazza, ''Recovery and Drift Dynamics of Resistance and Threshold Voltages in Phase-Change Memories,'' IEEE Trans. Electron Devices 54, No. 2, 308-315 (2007).
  11. A. Pirovano, A. L. Lacaita, F. Pellizzer, S. A. Kostylev, A. Benvenuti, and R. Bez, ''Low-Field Amorphous State Resistance and Threshold Voltage Drift in Chalcogenide Materials,'' IEEE Trans. Electron Devices 51, No. 5, 714-719 (2004).
  12. International Technical Roadmap for Semiconductors, 2006; see http://www.itrs.net/Links/2006Update/2006UpdateFinal. htm.
  13. A. Pirovano, A. L. Lacaita, A. Benvenuti, F. Pellizzer, S. Hudgens, and R. Bez, ''Scaling Analysis of Phase-Change Memory Technology,'' IEEE International Electron Devices Meeting, December 8-10, 2003, pp. 29.6.1-29.6.4.
  14. F. Pellizzer, A. Pirovano, F. Ottogalli, M. Magistretti, M. Scaravaggi, P. Zuliani, M. Tosi, et al., ''Novel muTrench Phase-Change Memory Cell for Embedded and Stand-alone Non-volatile Memory Applications,'' Symposium on VLSI Technology, 2004, pp. 18-19.
  15. S. J. Ahn, Y. N. Hwang, Y. J. Song, S. H. Lee, S. Y. Lee, J. H. Park, C. W. Jeong, et al., ''Highly Reliable 50nm Contact Cell Technology for 256Mb PRAM,'' Symposium on VLSI Technology, Digest of Technical Papers, 2005, pp. 98-99.
  16. S. Lai and T. Lowrey, ''OUM-A 180 nm Nonvolatile Memory Cell Element Technology for Stand Alone and Embedded Applications,'' International Electron Devices Meeting, Technical Digest, Washington, DC, December 2-5, 2001, pp. 3651-3654.
  17. C. W. Jeong, S. J. Ahn, Y. N. Hwang, Y. J. Song, J.-H. Oh, S.-Y. Lee, S.-H. Lee, et al., ''Highly Reliable Ring-Type Contact for High-Density Phase Change Memory,'' Jpn. J. Appl. Phys. 45, No. 4B, 3233-3237 (2006).
  18. Y. Song, K. Ryoo, Y. Hwang, C. Jeong, D. Lim, S. Park, J. Kim, et al., ''Highly Reliable 256Mb PRAM with Advanced Ring Contact Technology and Novel Encapsulating Technology,'' Symposium on VLSI Technology, Digest of Technical Papers, 2006, pp. 15-16.
  19. K.-C. Ryoo, Y. J. Song, J.-M. Shin, S.-S. Park, D.-W. Lim, J.-H. Kim, W.-I. Park, et al., ''Ring Contact Electrode Process for High Density Phase Change Random Access Memory,'' Jpn. J. Appl. Phys. 46, No. 4B, 2001-2005 (2007).
  20. S. Tyson, G. Wicker, T. Lowrey, S. Hudgens, and K. Hunt, ''Nonvolatile, High Density, High Performance Phase-Change Memory,'' IEEE Aerospace Conference Proceedings, Vol. 5, Big Sky, MT, March 18-25, 2000, pp. 385-390.
  21. Y.-T. Kim, Y.-N. Hwang, K.-H. Lee, S.-H. Lee, C.-W. Jeong, S.-J. Ahn, F. Yeung, et al., ''Programming Characteristics of Phase Change Random Access Memory Using Phase Change Simulations,'' Jpn. J. Appl. Phys. 44, No. 4B, 2701-2705 (2005).
  22. S. L. Cho, J. H. Yi, Y. H. Ha, B. J. Kuh, C. M. Lee, J. H. Park, S. D. Nam, et al., ''Highly Scalable On-Axis Confined Cell Structure for High Density PRAM Beyond 256Mb,'' Symposium on VLSI Technology, Digest of Technical Papers, 2005, pp. 96-97.
  23. M. H. Lankhorst, B. W. Ketelaars, and R. A. Wolters, ''Low- Cost and Nanoscale Non-volatile Memory Concept for Future Silicon Chips,'' Nat. Mater. 4, No. 4, 266-266 (2005).
  24. T. Happ, M. Breitwisch, A. Schrott, J. B. Philipp, M. Lee, R. Cheek, T. Nirschl, et al., ''Novel One-Mask Self-Heating Pillar Phase Change Memory,'' Symposium on VLSI Technology, Digest of Technical Papers, 2006, pp. 120-121.
  25. J. H. Oh, J. H. Park, Y. S. Lim, H. S. Lim, Y. T. Oh, J. S. Kim, J. M. Shin, et al., ''Full Integration of Highly Manufacturable 512Mb PRAM Based on 90nm Technology,'' International Electron Devices Meeting, San Francisco, CA, 2006, pp. 49-52.
  26. M. Breitwisch, T. Nirschl, C. F. Chen, Y. Zhu, M. H. Lee, M. Lamorey, G. W. Burr, et al., ''Novel Lithography- Independent Pore Phase Change Memory,'' Symposium on VLSI Technology, Digest of Technical Papers, 2007, pp. 100-101.
  27. A. Pirovano, A. Redaelli, F. Pellizzer, F. Ottogalli, M. Tosi, D. Ielmini, A. L. Lacaita, and R. Bez, ''Reliability Study of Phase-Change Nonvolatile Memories,'' IEEE Trans. Device Mater. Rel. 4, No. 3, 422-427 (2004).
  28. S. Senkader and C. D. Wright, ''Models for Phase-Change of Ge 2 Sb 2 Te 5 in Optical and Electrical Memory Devices,'' J. Appl. Phys. 95, No. 2, 504-511 (2004).
  29. D. Ielmini and Y. Zhang, ''Physics-Based Analytical Model of Chalcogenide-Based Memories for Array Simulation,'' International Electron Devices Meeting, Technical Digest, Washington, DC, 2006, pp. 401-404.
  30. S.-B. Kim and H.-S. P. Wong, ''Generalized Phase Change Memory Scaling Rule Analysis,'' Non-Volatile Semiconductor Memory Workshop, Monterey, CA, 2006, pp. 92-94.
  31. C. D. Wright, K. Blyuss, and P. Ashwin, ''Master-Equation Approach to Understanding Multistate Phase-Change Memories and Processors,'' Appl. Phys. Lett. 90, No. 6, 63113 (2007).
  32. G. Wicker, S. Tyson, T. Lowrey, S. Hudgens, R. Pugh, and K. Hunt, ''Nonvolatile, High Density, High Performance Phase Change Memory,'' Proceedings of SPIE, Vol. 3891, 1999, pp. 2-9.
  33. T. Gille, L. Goux, J. Lisoni, K. De Meyer, and D. J. Wouters, ''Impact of Material Crystallization Characteristics on the Switching Behavior of the Phase Change Memory Cell,'' MRS Symposium Proceedings, Vol. 918, Chalcogenide Alloys for Reconfigurable Electronics, 2006; ISBN 978-1-55899-875-9.
  34. Y. Yin, H. Sone, and S. Hosaka, ''Finite Element Analysis of Dependence of Programming Characteristics of Phase-Change Memory on Material Properties of Chalcogenides,'' Jpn. J. Appl. Phys. 45, No. 11, 8600-8603 (2006).
  35. D. H. Kim, F. Merget, M. Forst, and H. Kurz, ''Three- Dimensional Simulation Model of Switching Dynamics in Phase Change Random Access Memory Cells,'' J. Appl. Phys. 101, No. 6, 64512-64524 (2007).
  36. W. Czubatyj, T. Lowrey, S. Kostylev, and I. Asano, ''Current Reduction in Ovonic Memory Devices,'' Proceedings of the European Phase Change and Ovonic Science Symposium, Grenoble, France, 2006, pp. 143-152; see http:// www.epcos.org/library/papers/pdf_2006/pdf_Invited/ Czubatyj.pdf.
  37. L. van Pieterson, M. H. R. Lankhorst, M. van Schijndel, A. E. T. Kuiper, and J. H. J. Roosen, ''Phase-Change Recording Materials with a Growth-Dominated Crystallization Mechanism: A Materials Overview,'' J. Appl. Phys. 97, No. 8, 83520-83527 (2005).
  38. L. van Pieterson, M. van Schijndel, and J. C. N. Rijpers, ''Te-Free, Sb-Based Phase-Change Materials for High-Speed Rewritable Optical Recording,'' Appl. Phys. Lett. 83, No. 7, 1373-1375 (2003).
  39. E. G. Yeo, L. P. Shi, R. Zhao, and T. C. Chong, ''Investigation on Ultra-high Density and High Speed Non- volatile Phase Change Random Access Memory (PCRAM) by Material Engineering,'' MRS Symposium Proceedings, Vol. 918, Chalcogenide Alloys for Reconfigurable Electronics, 2006; ISBN 978-1-55899-875-9.
  40. S. J. Ahn, Y. J. Song, C. W. Jeong, J. M. Shin, Y. Fai, Y. N. Hwang, S. H. Lee, et al., ''Highly Manufacturable High Density Phase Change Memory of 64Mb and Beyond,'' International Electron Devices Meeting, IEDM Technical Digest, San Francisco, CA, 2004, pp. 907-910.
  41. S. W. Ryu, J. H. Oh, B. J. Choi, S.-Y. Hwang, S. K. Hong, C. S. Hwang, and H. J. Kim, ''SiO 2 Incorporation Effect in Ge 2 Sb 2 Te 5 Films Prepared by Magnetron Sputtering for Phase Change Random Access Memory Devices,'' Electrochem. Solid-State Lett. 9, No. 8, G259-G261 (2006).
  42. S. Raoux, M. Salinga, J. Jordan-Sweet, and A. Kellock, ''Effect of Al and Cu Doping on the Crystallization Properties of the Phase Change Materials SbTe and GeSb,'' J. Appl. Phys. 101, No. 4, 44909-44915 (2007).
  43. M. Chen, K. A. Rubin, and R. W. Barton, ''Compound Materials for Reversible, Phase-Change Optical Data Storage,'' Appl. Phys. Lett. 49, No. 9, 502-504 (1986).
  44. H. B. Chung, K. Shin, and J. M. Lee, ''Phase-Change Characteristics of Chalcogenide Ge 1 Se 1 Te 2 Thin Films for Use in Nonvolatile Memories,'' J. Vac. Sci. Technol. A25, No. 1, 48-53 (2007).
  45. K. Wang, C. Steimer, R. Detemple, D. Wamwangi, and M. Wuttig, ''Assessment of Se Based Phase Change Alloy as a Candidate for Non-volatile Electronic Memory Applications,'' Appl. Phys. A 81, No. 8, 1601-1605 (2005).
  46. S. M. Yoon, N. Y. Lee, S. O. Ryu, K. J. Choi, Y. S. Park, S. Y. Lee, B. G. Yu, M. J. Kang, S. Y. Choi, and M. Wuttig, ''Sb-Se-Based Phase-Change Memory Device with Lower Power and Higher Speed Operations.'' IEEE Electron Device Lett. 27, No. 6, 445-447 (2006).
  47. H. Iwasaki, M. Harigaya, O. Nonoyama, Y. Kageyama, M. Takahashi, K. Yamada, H. Deguchi, and Y. Ide, ''Completely Erasable Phase Change Optical Disc II: Application of Ag-In-Sb-Te Mixed-Phase System for Rewritable Compact Disc Compatible with CD-Velocity and Double CD-Velocity,'' Jpn. J. Appl. Phys. 32, No. 11B, 5241-5247 (1993).
  48. B. Liu, Z. T. Song, S. L. Feng, and B. M. Chen, ''Characteristics of Chalcogenide Nonvolatile Memory Nano- Cell-Element Based on Sb 2 Te 3 Material,'' Microelectr. Engin. 82, No. 2, 168-174 (2005).
  49. R. Detemple, D. Wamwangi, M. Wuttig, and G. Bihlmayer, ''Identification of Te Alloys with Suitable Phase Change Characteristics,'' Appl. Phys. Lett. 83, No. 13, 2572-2574 (2003).
  50. R. Detemple, I. Friedrich, W. Njoroge, I. Thomas, V. Weidenhof, H.-G. Wo¨ltgens, S. Ziegler, and M. Wuttig, ''Microscopic Studies of Fast Phase Transformations in GeSbTe Films,'' Materials Research Society Proceedings, Vol. 674, 2001; see http://stinet.dtic.mil/cgi-bin/GetTRDoc? AD¼ADP012319&Location¼U2&doc¼GetTRDoc.pdf.
  51. S. Raoux, C. T. Rettner, J. Jordan-Sweet, V. R. Deline, J. B. Philipp, and H.-L. Lung, ''Scaling Properties of Phase Change Nanostructures and Thin Films,'' Proceedings of the European Symposium on Phase Change and Ovonic Science, Grenoble, France, May 2006, pp. 127-134.
  52. H. Satoh, K. Sugawara, and K. Tanaka, ''Nanoscale Phase Changes in Crystalline Ge 2 Sb 2 Te 5 Films Using Scanning Probe Microscopes,'' J. Appl. Phys. 99, No. 2, 024306 (2006).
  53. H. F. Hamann, M. O'Boyle, Y. C. Martin, M. Rooks, and H. K. Wickramasinghe, ''Ultra-High-Density Phase-Change Storage and Memory,'' Nat. Mater. 5, No. 5, 383-387 (2006).
  54. T. Gotoh, K. Sugawara, and K. Tanaka, ''Minimal Phase- Change Marks Produced in Amorphous Ge 2 Sb 2 Te 5 Films,'' Jpn. J. Appl. Phys. 43, No. 6B, L818-L821 (2004).
  55. Y. Jung, S.-H. Lee, D.-K. Ko, and R. Agarwal, ''Synthesis and Characterization of Ge 2 Sb 2 Te 5 Nanowires with Memory Switching Effect,'' J. Am. Chem. Soc. 128, No. 43, 14026-14027 (2006).
  56. S.-H. Lee, D.-K. Ko, Y. Jung, and R. Agarwal, ''Size- Dependent Phase Transition Memory Switching Behavior and Low Writing Currents in GeTe Nanowires,'' Appl. Phys. Lett. 89, No. 22, 223116 (2006).
  57. X. Sun, B. Yu, and M. Meyyappan, ''Synthesis and Nanoscale Thermal Encoding of Phase-Change Nanowires,'' Appl. Phys. Lett. 90, No. 18, 183116 (2007).
  58. S. Meister, H. Peng, K. McIlwrath, K. Jarausch, X. F. Zhang, and Y. Cui, ''Synthesis and Characterization of Phase-Change Nanowires,'' Nano Lett. 6, No. 7, 1514-1517 (2006).
  59. X. Sun, B. Yu, G. Ng, T. D. Nguyen, and M. Meyyappan, ''III-VI Compound Semiconductor Indium Selenide (In 2 Se 3 ) Nanowires: Synthesis and Characterization,'' Appl. Phys. Lett. 89, No. 23, 233121 (2006).
  60. D. S. Suh, E. Lee, K. H. P. Kim, J. S. Noh, W. C. Shin, Y. S. Kang, C. Kim, Y. Khang, H. R. Yoon, and W. Jo, ''Nonvolatile Switching Characteristics of Laser-ablated Ge 2 Sb 2 Te 5 Nanoparticles for Phase-Change Memory Applications,'' Appl. Phys. Lett. 90, No. 2, 023101 (2007).
  61. B. F. Soares, F. Jonson, and N. I. Zheludev, ''All-Optical Phase-Change Memory in a Single Gallium Nanoparticle,'' Phys. Rev. Lett. 98, No. 15, 153905 (2007).
  62. H. S. Choi, K. S. Seol, K. Takeuchi, J. Fujita, and Y. Ohki, ''Synthesis of Size-and Structure-Controlled Ge 2 Sb 2 Te 5 Nanoparticles,'' Jpn. J. Appl. Phys. 44, No. 10, 7720-7722 (2005).
  63. H. R. Yoon, W. Jo, E. H. Lee, J. H. Lee, M. Kim, K. Y. Lee, and Y. Khang, ''Generation of Phase-Change Ge-Sb-Te Nanoparticles by Pulsed Laser Ablation,'' J. Non-Cryst. Solids 351, No. 43, 3430-3434 (2005).
  64. Y. Zhang, H.-S. P. Wong, S. Raoux, J. N. Cha, C. T. Rettner, L. E. Krupp, T. Topuria, D. J. Milliron, P. M. Rice, and J. Jordan-Sweet, ''Phase Change Nanodot Arrays Fabricated Using a Self-Assembly Diblock Copolymer Approach,'' Appl. Phys. Lett. 91, No. 13, 13104 (2007).
  65. J. N. Cha, Y. Zhang, H.-S. P. Wong, S. Raoux, C. Rettner, L. Krupp, and V. Deline, ''Biomimetic Approaches for Fabricating High-Density Nanopatterned Arrays,'' Chem. Mater. 19, No. 4, 839-843 (2007).
  66. S. Raoux, Y. Zhang, D. Milliron, J. Cha, M. Caldwell, C. T. Rettner, J. Jordan-Sweet, and H.-S. P. Wong, ''X-ray Diffraction Studies of Phase Change Nanoparticles Produced by Self-Assembly-Based Lithographic Techniques,'' Proceedings of the European Symposium on Phase Change and Ovonic Science, Zermatt, Switzerland, September 2007, paper F01-19.
  67. S. Raoux, C. T. Rettner, J. L. Jordan-Sweet, A. J. Kellock, T. Topuria, P. M. Rice, and D. C. Miller, ''Direct Observation of Amorphous to Crystalline Phase Transitions in Nano- particle Arrays of Phase Change Materials,'' J. Appl. Phys. 102, No. 9, 94305 (2007).
  68. I. Friedrich, V. Weidenhof, W. Njoroge, P. Franz, and M. Wuttig, ''Structural Transformations of Ge 2 Sb 2 Te 5 Films Studied by Electrical Resistance Measurements,'' J. Appl. Phys. 87, No. 9, 4130-4134 (2000).
  69. D. B. Mitzi, S. Raoux, A. G. Schrott, M. Copel, A. Kellock, and J. Jordan-Sweet, ''Solution-Based Processing of the Phase- Change Material KSb 5 S 8 ,'' Chem. Mat. 18, No. 26, 6278-6282 (2006).
  70. D. Milliron, S. Raoux, R. S. Shelby, and J. Jordan-Sweet, ''Solution-Phase Deposition and Nanopatterning of GeSbSe Phase-Change Materials,'' Nat. Mat. 6, No. 5, 352-356 (2007).
  71. M. Caldwell, S. Raoux, D. J. Milliron, and H.-S. P. Wong, ''Synthesis and Characterization of Germanium Chalcogenide Nanoparticles via Single-Source Precursors and Coprecipitation,'' American Chemical Society 234th National Meeting and Exposition, Boston, MA, August 19-23, 2007; see http://oasys2.confex.com/acs/234nm/techprogram/ P1103272.HTM.
  72. Y.-C. Chen, C. F. Chen, C. T. Chen, J. Y. Yu, S. Wu, S. L. Lung, R. Liu, and C.-Y. Lu, ''An Access-Transistor-Free (0T/1R) Non-volatile Resistance Random Access Memory (RRAM) Using a Novel Threshold Switching, Self-Rectifying Chalcogenide Device,'' IEEE International Electron Devices Meeting, IEDM Technical Digest, 2003, pp. 37.4.1-37.4.4.
  73. H.-L. Lung, M. Breitwisch, T. Happ, and C. Lam, ''Phase- Change Memory-Present and Future,'' Proceedings of the Second International Conference on Memory Technology and Design, Giens, France, May 7-10, 2007, pp. 35-38; see http:// www.icmtd.com/Proceeding/PROCEEDINGS%20-% 20ICMTD2007.pdf.
  74. T. Nirschl, J. B. Philipp, T. D. Happ, G. W. Burr, B. Rajendran, M.-H. Lee, A. Schrott, et al., ''Write Strategies for 2 and 4-Bit Multi-level Phase-Change Memory,'' IEEE International Electron Devices Meeting, Washington, DC, 2007, pp. 461-464.
  75. J. I. Lee, H. Park, S. L. Cho, Y. L. Park, B. J. Bae, J. H. Park, J. S. Park, et al., ''Highly Scalable Phase Change Memory with CVD GeSbTe for Sub 50nm Generation,'' IEEE Symposium on VLSI Technology, Kyoto, Japan, 2007, pp. 102-103.
  76. Y. Zhang, S. B. Kim, J. P. McVittie, H. Jagannathan, J. B. Ratchford, C. E. D. Chidsey, Y. Nishi, and H.-S. P. Wong, ''An Integrated Phase Change Memory Cell with Ge Nanowire Diode For Cross-Point Memory,'' IEEE Symposium on VLSI Technology, Tokyo, Japan, 2007, pp. 98-99, 2007.