Academia.eduAcademia.edu

Outline

Actions of pointed Hopf algebras with reduced pi invariants

2007, Proceedings of the American Mathematical Society

Abstract

Let R be an H-module algebra, where H is a pointed Hopf algebra acting on R finitely of dimension N . Suppose that L H = 0 for every nonzero H-stable left ideal of R. It is proved that if R H satisfies a polynomial identity of degree d, then R satisfies a polynomial identity of degree dN provided at least one of the following additional conditions is fulfilled: (1) R is semiprime and where [ √ N ] is the greatest integer in √ N .

References (16)

  1. N. Andruskiewitsch, H.J. Schneider, Pointed Hopf Algebras, New directions in Hopf Al- gebras. Math. Sci. Res. Inst. Publ., 1-68, 43, Cambridge Univ. Press, Cambridge, 2002, 634-654. MR1913436 (2003e:16043)
  2. Y. Bahturin, V. Linchenko, Identities of algebras with actions of Hopf algebras, J. Algebra 202 (1998), 634-654. MR1617671 (99d:16040)
  3. Y. Bahturin, M. Zaicev, Identities of graded algebras, J. Algebra 205 (1998), 1-12. MR1631298 (99f:17034)
  4. K.I. Beidar, P. Grzeszczuk, Actions of Lie algebras on rings without nilpotent elements, Algebra Colloq. 2(2) (1995), 105-116. MR1329141 (96f:16043)
  5. K.I. Beidar, B. Torrecillas, On actions of Hopf algebras with cocommutative coradical, J. Pure and Applied Algebra, 161 (2001), 13-30. MR1834076 (2002f:16080)
  6. J. Bergen, M. Cohen, Actions of commutative Hopf algebras, Bull. London Math. Soc., 18 (1986), 159-164. MR0818820 (87e:16052)
  7. J. Bergen, M. Cohen, D. Fischman, Irreducible actions and faithful actions of Hopf alge- bras, Israel J. Math., 72 (1990), 5-18. MR1098978 (92g:16044)
  8. J. Bergen, P. Grzeszczuk, Invariants of Lie superalgebras acting on associative rings, Israel J. Math. 94 (1996), 403-428. MR1394584 (97g:16046)
  9. M. Cohen, Quantum commutativity and central invariants, Advances in Hopf algebras, Lecture Notes in Pure and Appl. Math., 158, Dekker, New York, 1994, 25-38. MR1289420 (95h:16050)
  10. M. Cohen, S. Westreich, Central invariants of H-module algebras, Comm. Algebra, 21(8) (1993), 2859-2883. MR1222747 (94d:16034)
  11. P. Grzeszczuk, M. Hryniewicka, Polynomial identities of algebras with actions of pointed Hopf algebras, J. Algebra, 278 (2004), 684-703. MR2071660 (2005d:16037)
  12. V. K. Kharchenko, Generalized identities with automorphisms, Algebra i Logika 14 (1975), 215-237 (English translation 1976, 132-148). MR0399153 (53:3004)
  13. V. K. Kharchenko, Fixed elements under a finite group acting on a semiprime ring, Algebra i Logika 14 (1975), 328-344 (English translation 1976, 409-417). MR0429998 (55:3006)
  14. V. K. Kharchenko, J. Keller, S. Rodrigues-Romo, Prime rings with PI rings of constants, Israel J. Math. 96 (1996), 357-377. MR1433695 (97k:16052)
  15. S. Montgomery, Hopf algebras and their actions on rings, CBMS Regional Conference Se- ries in Mathematics 82, Amer. Math. Soc., Providence, R.I., 1993. MR1243637 (94i:16019)
  16. S. Montgomery, Bi-invertible actions of Hopf algebras, Israel J. Math., 83 (1993), no. 1-2, 45-71. MR1239716 (94g:16047)