Academia.eduAcademia.edu

Outline

Entropy production in inflation from spectator loops

2019, Physical review

https://doi.org/10.1103/PHYSREVD.100.083505

Abstract

Perturbations in cosmic microwave background (CMB) photons and large scale structure of the universe are sourced primarily by the curvature perturbation which is widely believed to be produced during inflation. In this paper we present a 2-field inflationary model in which the inflaton couples bi-quadratically to a spectator field. We show that the spectator induces a rapid growth of the momentum of the curvature perturbation and the associated Gaussian van Neumann entropy during inflation such that the initial conditions at the end of inflation are substantially different from the standard ones. Consequently, one ought to reconsider the kinetic equations describing evolution of the photon, dark matter and baryonic fluids in radiation and matter eras and take account of the fact that the curvature perturbation and its canonical momentum are two a priory independent stochastic fields. We also briefly analyze possible imprints on the CMB temperature fluctuations from the more general inflationary scenario which contains light spectator fields coupled to the inflaton.

References (57)

  1. Planck Collaboration, N. Aghanim et al., Planck 2015 results. XI. CMB power spectra, likelihoods, and robustness of parameters, Astron. Astrophys. 594 (2016) A11, [arXiv:1507.02704].
  2. Planck Collaboration, N. Aghanim et al., Planck 2018 results. VI. Cosmological parameters, arXiv:1807.06209.
  3. Planck Collaboration, Y. Akrami et al., Planck 2018 results. X. Constraints on inflation, arXiv:1807.06211.
  4. Planck Collaboration, Y. Akrami et al., Planck 2018 results. VII. Isotropy and Statistics of the CMB, arXiv:1906.02552.
  5. C. T. Byrnes and D. Wands, Curvature and isocurvature perturbations from two-field inflation in a slow-roll expansion, Phys. Rev. D74 (2006) 043529, [astro-ph/0605679].
  6. Planck Collaboration, P. A. R. Ade et al., Planck 2013 results. XXV. Searches for cosmic strings and other topological defects, Astron. Astrophys. 571 (2014) A25, [arXiv:1303.5085].
  7. T. J. Hollowood and J. I. McDonald, Decoherence, discord and the quantum master equation for cosmological perturbations, Phys. Rev. D95 (2017), no. 10 103521, [arXiv:1701.02235].
  8. S. Weinberg, Quantum contributions to cosmological correlations, Phys. Rev. D72 (2005) 043514, [hep-th/0506236].
  9. S. Weinberg, Quantum contributions to cosmological correlations. II. Can these corrections become large?, Phys. Rev. D74 (2006) 023508, [hep-th/0605244].
  10. J. F. Koksma, T. Prokopec, and M. G. Schmidt, Entropy and Correlators in Quantum Field Theory, Annals Phys. 325 (2010) 1277-1303, [arXiv:1002.0749].
  11. R. H. Brandenberger, V. F. Mukhanov, and T. Prokopec, Entropy of a classical stochastic field and cosmological perturbations, Phys. Rev. Lett. 69 (1992) 3606-3609, [astro-ph/9206005].
  12. R. H. Brandenberger, T. Prokopec, and V. F. Mukhanov, The Entropy of the gravitational field, Phys. Rev. D48 (1993) 2443-2455, [gr-qc/9208009].
  13. T. Prokopec, Entropy of the squeezed vacuum, Class. Quant. Grav. 10 (1993) 2295-2306.
  14. D. Polarski and A. A. Starobinsky, Semiclassicality and decoherence of cosmological perturbations, Class. Quant. Grav. 13 (1996) 377-392, [gr-qc/9504030].
  15. J. Lesgourgues, D. Polarski, and A. A. Starobinsky, Quantum to classical transition of cosmological perturbations for nonvacuum initial states, Nucl. Phys. B497 (1997) 479-510, [gr-qc/9611019].
  16. R. H. Brandenberger, R. Laflamme, and M. Mijić, Classical Perturbations From Decoherence of Quantum Fluctuations in the Inflationary Universe, Mod. Phys. Lett. A5 (1990) 2311-2318.
  17. C. Kiefer, D. Polarski, and A. A. Starobinsky, Quantum to classical transition for fluctuations in the early universe, Int. J. Mod. Phys. D7 (1998) 455-462, [gr-qc/9802003].
  18. T. Prokopec and G. I. Rigopoulos, Decoherence from Isocurvature perturbations in Inflation, JCAP 0711 (2007) 029, [astro-ph/0612067].
  19. W. H. Zurek, Decoherence, einselection, and the quantum origins of the classical, Rev. Mod. Phys. 75 (2003) 715-775, [quant-ph/0105127].
  20. E. Calzetta and B. L. Hu, Correlations, decoherence, dissipation, and noise in quantum field theory, in Heat Kernels and Quantum Gravity Winnipeg, Canada, August 2-6, 1994, 1995. hep-th/9501040.
  21. J. F. Koksma, T. Prokopec, and M. G. Schmidt, Decoherence in an Interacting Quantum Field Theory: The Vacuum Case, Phys. Rev. D81 (2010) 065030, [arXiv:0910.5733].
  22. J. F. Koksma, T. Prokopec, and M. G. Schmidt, Decoherence in an Interacting Quantum Field Theory: Thermal Case, Phys. Rev. D83 (2011) 085011, [arXiv:1102.4713].
  23. T. Prokopec, M. G. Schmidt, J. Weenink, and M. G. Schmidt, The Gaussian entropy of fermionic systems, Annals Phys. 327 (2012) 3138-3169, [arXiv:1204.4124].
  24. F. C. Lombardo and D. Lopez Nacir, Decoherence during inflation: The Generation of classical inhomogeneities, Phys. Rev. D72 (2005) 063506, [gr-qc/0506051].
  25. P. Martineau, On the decoherence of primordial fluctuations during inflation, Class. Quant. Grav. 24 (2007) 5817-5834, [astro-ph/0601134].
  26. E. Nelson, Quantum Decoherence During Inflation from Gravitational Nonlinearities, JCAP 1603 (2016) 022, [arXiv:1601.03734].
  27. E. Nelson and C. J. Riedel, Classical Entanglement Structure in the Wavefunction of Inflationary Fluctuations, Int. J. Mod. Phys. D26 (2017), no. 12 1743006, [arXiv:1704.00728].
  28. E. Calzetta and B. L. Hu, Quantum fluctuations, decoherence of the mean field, and structure formation in the early universe, Phys. Rev. D52 (1995) 6770-6788, [gr-qc/9505046].
  29. G. Ye and Y.-S. Piao, Quantum decoherence of primordial perturbations through nonlinear scaler-tensor interaction, arXiv:1806.07672.
  30. A. Rostami and J. T. Firouzjaee, Quantum decoherence from entanglement during inflation, arXiv:1705.07703.
  31. J. Liu, C.-M. Sou, and Y. Wang, Cosmic Decoherence: Massive Fields, JHEP 10 (2016) 072, [arXiv:1608.07909].
  32. J. Martin and V. Vennin, Observational constraints on quantum decoherence during inflation, JCAP 1805 (2018) 063, [arXiv:1801.09949].
  33. J. Martin and V. Vennin, Non Gaussianities from Quantum Decoherence during Inflation, JCAP 1806 (2018) 037, [arXiv:1805.05609].
  34. D. Boyanovsky, Imprint of entanglement entropy in the power spectrum of inflationary fluctuations, Phys. Rev. D98 (2018), no. 2 023515, [arXiv:1804.07967].
  35. D. Boyanovsky, Effective field theory during inflation: Reduced density matrix and its quantum master equation, Phys. Rev. D92 (2015), no. 2 023527, [arXiv:1506.07395].
  36. D. Boyanovsky, Effective field theory during inflation. II. Stochastic dynamics and power spectrum suppression, Phys. Rev. D93 (2016) 043501, [arXiv:1511.06649].
  37. T. Prokopec and J. Weenink, Uniqueness of the gauge invariant action for cosmological perturbations, JCAP 1212 (2012) 031, [arXiv:1209.1701].
  38. T. Prokopec and J. Weenink, Frame independent cosmological perturbations, JCAP 1309 (2013) 027, [arXiv:1304.6737].
  39. R. H. Brandenberger, H. Feldman, and V. F. Mukhanov, Classical and quantum theory of perturbations in inflationary universe models, in Evolution of the universe and its observational quest. Proceedings, 37th Yamada Conference, Tokyo, Japan, June 8-12, 1993, pp. 19-30, 1993. astro-ph/9307016.
  40. K. A. Malik and D. Wands, Cosmological perturbations, Phys. Rept. 475 (2009) 1-51, [arXiv:0809.4944].
  41. J. Weenink and T. Prokopec, Gauge invariant cosmological perturbations for the nonminimally coupled inflaton field, Phys. Rev. D82 (2010) 123510, [arXiv:1007.2133].
  42. T. Prokopec and G. Rigopoulos, Path Integral for Inflationary Perturbations, Phys. Rev. D82 (2010) 023529, [arXiv:1004.0882].
  43. J. M. Maldacena, Non-Gaussian features of primordial fluctuations in single field inflationary models, JHEP 05 (2003) 013, [astro-ph/0210603].
  44. S. P. Miao, T. Prokopec, and R. P. Woodard, Scalar enhancement of the photon electric field by the tail of the graviton propagator, Phys. Rev. D98 (2018), no. 2 025022, [arXiv:1806.00742].
  45. S. P. Miao, T. Prokopec, and R. P. Woodard, Deducing Cosmological Observables from the S-matrix, Phys. Rev. D96 (2017), no. 10 104029, [arXiv:1708.06239].
  46. J. Weenink and T. Prokopec, On decoherence of cosmological perturbations and stochastic inflation, arXiv:1108.3994.
  47. J.-O. Gong and M.-S. Seo, Quantum non-linear evolution of inflationary tensor perturbations, JHEP 05 (2019) 021, [arXiv:1903.12295].
  48. A. Albrecht, P. Ferreira, M. Joyce, and T. Prokopec, Inflation and squeezed quantum states, Phys. Rev. D50 (1994) 4807-4820, [astro-ph/9303001].
  49. J. M. Cornwall, R. Jackiw, and E. Tomboulis, Effective action for composite operators, Phys. Rev. D 10 (Oct, 1974) 2428-2445.
  50. V. K. Onemli and R. P. Woodard, Quantum effects can render w ¡ -1 on cosmological scales, Phys. Rev. D70 (2004) 107301, [gr-qc/0406098].
  51. T. Prokopec, N. C. Tsamis, and R. P. Woodard, Two loop stress-energy tensor for inflationary scalar electrodynamics, Phys. Rev. D78 (2008) 043523, [arXiv:0802.3673].
  52. J. Fumagalli, S. Mooij, and M. Postma, Unitarity and predictiveness in new Higgs inflation, JHEP 03 (2018) 038, [arXiv:1711.08761].
  53. M. Postma and J. van de Vis, Electroweak stability and non-minimal coupling, JCAP 1705 (2017), no. 05 004, [arXiv:1702.07636].
  54. N. Straumann, From primordial quantum fluctuations to the anisotropies of the cosmic microwave background radiation, Annalen Phys. 15 (2006) 701-847, [hep-ph/0505249].
  55. S. Dodelson, Modern Cosmology. Academic Press, Amsterdam, 2003.
  56. S. Weinberg, Adiabatic modes in cosmology, Phys. Rev. D67 (2003) 123504, [astro-ph/0302326].
  57. V. Mukhanov, H. Feldman, and R. Brandenberger, Theory of cosmological perturbations, Physics Reports 215 (1992), no. 5 203 -333.