Academia.eduAcademia.edu

Outline

Foliations Associated to Regular Poisson Structures

2001, Communications in Contemporary Mathematics

https://doi.org/10.1142/S0219199701000445

Abstract

A regular Poisson manifold can be described as a foliated space carrying a tangentially symplectic form. Examples of foliations are produced here that are not induced by any Poisson structure although all the basic obstructions vanish.

References (9)

  1. M. Bertelson, Foliations associated to regular Poisson structures, Ph.D. Thesis, Stanford University, June 2000.
  2. M. Bertelson, An h-principle for certain open relations on foliated spaces. In preparation.
  3. A. El Kacimi-Alaoui, Sur la cohomologie feuilletée. (French) [On foliated cohomology] Compositio Math. 49 (1983), no. 2, 195-215.
  4. M.J. Gotay, R. Lashof, J. Śniatycki and A. Weinstein, Closed forms on symplectic fiber bundles. Comment. Math. Helv. 58 (1983), no. 4, 617- 621.
  5. M. Gromov, Stable mappings of foliations into manifolds. Izv. Akad. Nauk SSSR Ser. Mat. 33 (1969), 707-734.
  6. M. Gromov, Partial differential relations. Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], 9. Springer-Verlag, Berlin-New York, 1986.
  7. G. Hector, E. Macías, M. Saralegi, Lemme de Moser feuilleté et classifi- cation des variétés de Poisson régulières. (French) [A foliated version of Moser's lemma and classification of regular Poisson manifolds] Publ. Mat. 33 (1989), no. 3, 423-430.
  8. C.H. Taubes, The Seiberg-Witten invariants and symplectic forms. Math. Res. Lett. 1 (1994), no. 6, 809-822.
  9. A. Weinstein, Poisson geometry. Symplectic geometry, Differential Geom. Appl. 9 (1998), no. 1-2, 213-238.