Foliations Associated to Regular Poisson Structures
2001, Communications in Contemporary Mathematics
https://doi.org/10.1142/S0219199701000445Abstract
A regular Poisson manifold can be described as a foliated space carrying a tangentially symplectic form. Examples of foliations are produced here that are not induced by any Poisson structure although all the basic obstructions vanish.
References (9)
- M. Bertelson, Foliations associated to regular Poisson structures, Ph.D. Thesis, Stanford University, June 2000.
- M. Bertelson, An h-principle for certain open relations on foliated spaces. In preparation.
- A. El Kacimi-Alaoui, Sur la cohomologie feuilletée. (French) [On foliated cohomology] Compositio Math. 49 (1983), no. 2, 195-215.
- M.J. Gotay, R. Lashof, J. Śniatycki and A. Weinstein, Closed forms on symplectic fiber bundles. Comment. Math. Helv. 58 (1983), no. 4, 617- 621.
- M. Gromov, Stable mappings of foliations into manifolds. Izv. Akad. Nauk SSSR Ser. Mat. 33 (1969), 707-734.
- M. Gromov, Partial differential relations. Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], 9. Springer-Verlag, Berlin-New York, 1986.
- G. Hector, E. Macías, M. Saralegi, Lemme de Moser feuilleté et classifi- cation des variétés de Poisson régulières. (French) [A foliated version of Moser's lemma and classification of regular Poisson manifolds] Publ. Mat. 33 (1989), no. 3, 423-430.
- C.H. Taubes, The Seiberg-Witten invariants and symplectic forms. Math. Res. Lett. 1 (1994), no. 6, 809-822.
- A. Weinstein, Poisson geometry. Symplectic geometry, Differential Geom. Appl. 9 (1998), no. 1-2, 213-238.