Academia.eduAcademia.edu

Outline

A Sensory Code for Host Seeking in Parasitic Nematodes

2011, Current Biology

https://doi.org/10.1016/J.CUB.2011.01.048

Abstract

Parasitic nematode species often display highly specialized host-seeking behaviors that reflect their specific host preferences. Many such behaviors are triggered by host odors, but little is known about either the specific olfactory cues that trigger these behaviors or the underlying neural circuits. Heterorhabditis bacteriophora and Steinernema carpocapsae are phylogenetically distant insect-parasitic nematodes whose host-seeking and host-invasion behavior resembles that of some devastating human-and plant-parasitic nematodes. We compare the olfactory responses of Heterorhabditis and Steinernema infective juveniles (IJs) to those of Caenorhabditis elegans dauers, which are analogous life stages . The broad host range of these parasites results from their ability to respond to the universally produced signal carbon dioxide (CO 2 ), as well as a wide array of odors, including host-specific odors that we identified using thermal desorption-gas chromatography-mass spectroscopy. We find that CO 2 is attractive for the parasitic IJs and C. elegans dauers despite being repulsive for C. elegans adults [2-4], and we identify a sensory neuron that mediates CO 2 response in both parasitic and free-living species, regardless of whether CO 2 is attractive or repulsive. The parasites' odor response profiles are more similar to each other than to that of C. elegans despite their greater phylogenetic distance, likely reflecting evolutionary convergence to insect parasitism.

References (47)

  1. Viney, M.E., Thompson, F.J., and Crook, M. (2005). TGF-b and the evolution of nematode parasitism. Int. J. Parasitol. 35, 1473-1475.
  2. Hallem, E.A., and Sternberg, P.W. (2008). Acute carbon dioxide avoidance in Caenorhabditis elegans. Proc. Natl. Acad. Sci. USA 105, 8038-8043.
  3. Bretscher, A.J., Busch, K.E., and de Bono, M. (2008). A carbon dioxide avoidance behavior is integrated with responses to ambient oxygen and food in Caenorhabditis elegans. Proc. Natl. Acad. Sci. USA 105, 8044- 8049.
  4. Hallem, E.A., Spencer, W.C., McWhirter, R.D., Zeller, G., Henz, S.R., Ra ¨tsch, G., Miller, D.M., 3rd, Horvitz, H.R., Sternberg, P.W., and Ringstad, N. (2011). Receptor-type guanylate cyclase is required for carbon dioxide sensation by Caenorhabditis elegans. Proc. Natl. Acad. Sci. USA 108, 254-259.
  5. Ashton, F.T., Li, J., and Schad, G.A. (1999). Chemo-and thermosensory neurons: Structure and function in animal parasitic nematodes. Vet. Parasitol. 84, 297-316.
  6. Ciche, T.A., and Ensign, J.C. (2003). For the insect pathogen Photorhabdus luminescens, which end of a nematode is out? Appl. Environ. Microbiol. 69, 1890-1897.
  7. Martens, E.C., Heungens, K., and Goodrich-Blair, H. (2003). Early colonization events in the mutualistic association between Steinernema carpocapsae nematodes and Xenorhabdus nematophila bacteria. J. Bacteriol. 185, 3147-3154.
  8. Kim, Y., Ji, D., Cho, S., and Park, Y. (2005). Two groups of entomopatho- genic bacteria, Photorhabdus and Xenorhabdus, share an inhibitory action against phospholipase A2 to induce host immunodepression. J. Invertebr. Pathol. 89, 258-264.
  9. Au, C., Dean, P., Reynolds, S.E., and ffrench-Constant, R.H. (2004). Effect of the insect pathogenic bacterium Photorhabdus on insect phagocytes. Cell. Microbiol. 6, 89-95.
  10. Daborn, P.J., Waterfield, N., Blight, M.A., and Ffrench-Constant, R.H. (2001). Measuring virulence factor expression by the pathogenic bacte- rium Photorhabdus luminescens in culture and during insect infection. J. Bacteriol. 183, 5834-5839.
  11. Bowen, D., Rocheleau, T.A., Blackburn, M., Andreev, O., Golubeva, E., Bhartia, R., and ffrench-Constant, R.H. (1998). Insecticidal toxins from the bacterium Photorhabdus luminescens. Science 280, 2129-2132.
  12. Lewis, E.E. (2002). Behavioral ecology. In Entomopathogenic Nematology, R. Gauger, ed. (New York: CAB International), pp. 205-223.
  13. Lewis, E.E., Campbell, J., Griffin, C., Kaya, H., and Peters, A. (2006). Behavioral ecology of entomopathogenic nematodes. Biol. Control 38, 66-79.
  14. Campbell, J.F., and Gauger, R. (1993). Nictation behaviour and its ecological implications in the host search strategies of entomopatho- genic nematodes (Heterorhabditidae and Steinernematidae). Behaviour 126, 155-169.
  15. O'Halloran, D.M., and Burnell, A.M. (2003). An investigation of chemo- taxis in the insect parasitic nematode Heterorhabditis bacteriophora. Parasitology 127, 375-385.
  16. Pye, A.E., and Burman, M. (1981). Neoaplectana carpocapsae: Nematode accumulations on chemical and bacterial gradients. Exp. Parasitol. 51, 13-20.
  17. Schmidt, J., and All, J.N. (1979). Attraction of Neoaplectana carpocap- sae (Nematoda: Steinernematidae) to common excretory products of insects. Environ. Entomol. 8, 55-61.
  18. Campbell, J.F., and Kaya, H.K. (2000). Influence of insect-associated cues on the jumping behavior of entomopathogenic nematodes (Steinernema spp.). Behavior 137, 591-609.
  19. Haas, W. (2003). Parasitic worms: Strategies of host finding, recognition and invasion. Zoology (Jena) 106, 349-364.
  20. Sciacca, J., Forbes, W.M., Ashton, F.T., Lombardini, E., Gamble, H.R., and Schad, G.A. (2002). Response to carbon dioxide by the infective larvae of three species of parasitic nematodes. Parasitol. Int. 51, 53-62.
  21. Klowden, M.J. (1995). Blood, sex, and the mosquito. Bioscience 45, 326-331.
  22. Hallem, E.A., Rengarajan, M., Ciche, T.A., and Sternberg, P.W. (2007). Nematodes, bacteria, and flies: A tripartite model for nematode para- sitism. Curr. Biol. 17, 898-904.
  23. Tissenbaum, H.A., Hawdon, J., Perregaux, M., Hotez, P., Guarente, L., and Ruvkun, G. (2000). A common muscarinic pathway for diapause recovery in the distantly related nematode species Caenorhabditis elegans and Ancylostoma caninum. Proc. Natl. Acad. Sci. USA 97, 460-465.
  24. Barrie `re, A., and Fe ´lix, M.A. (2005). High local genetic diversity and low outcrossing rate in Caenorhabditis elegans natural populations. Curr. Biol. 15, 1176-1184.
  25. Fe ´lix, M.A., and Braendle, C. (2010). The natural history of Caenorhabditis elegans. Curr. Biol. 20, R965-R969.
  26. Srinivasan, J., Durak, O., and Sternberg, P.W. (2008). Evolution of a polymodal sensory response network. BMC Biol. 6, 52.
  27. Ashton, F.T., Zhu, X., Boston, R., Lok, J.B., and Schad, G.A. (2007). Strongyloides stercoralis: Amphidial neuron pair ASJ triggers signifi- cant resumption of development by infective larvae under host- mimicking in vitro conditions. Exp. Parasitol. 115, 92-97.
  28. Forbes, W.M., Ashton, F.T., Boston, R., Zhu, X., and Schad, G.A. (2004). Chemoattraction and chemorepulsion of Strongyloides stercoralis infective larvae on a sodium chloride gradient is mediated by amphidial neuron pairs ASE and ASH, respectively. Vet. Parasitol. 120, 189-198.
  29. Ketschek, A.R., Joseph, R., Boston, R., Ashton, F.T., and Schad, G.A. (2004). Amphidial neurons ADL and ASH initiate sodium dodecyl sulphate avoidance responses in the infective larva of the dog hook- worm Anclyostoma caninum. Int. J. Parasitol. 34, 1333-1336.
  30. Bumbarger, D.J., Crum, J., Ellisman, M.H., and Baldwin, J.G. (2007). Three-dimensional fine structural reconstruction of the nose sensory structures of Acrobeles complexus compared to Caenorhabditis elegans (Nematoda: Rhabditida). J. Morphol. 268, 649-663.
  31. Bumbarger, D.J., Wijeratne, S., Carter, C., Crum, J., Ellisman, M.H., and Baldwin, J.G. (2009). Three-dimensional reconstruction of the amphid sensilla in the microbial feeding nematode, Acrobeles complexus (Nematoda: Rhabditida). J. Comp. Neurol. 512, 271-281.
  32. White, J.G., Southgate, E., Thomson, J.N., and Brenner, S. (1986). The structure of the nervous system of the nematode Caenorhabditis elegans. Philos. Trans. R. Soc. Lond., B 314, 1-340.
  33. Dieterich, C., and Sommer, R.J. (2009). How to become a parasite: Lessons from the genomes of nematodes. Trends Genet. 25, 203-209.
  34. Kiontke, K., Gavin, N.P., Raynes, Y., Roehrig, C., Piano, F., and Fitch, D.H. (2004). Caenorhabditis phylogeny predicts convergence of hermaphroditism and extensive intron loss. Proc. Natl. Acad. Sci. USA 101, 9003-9008.
  35. Hominick, W.M. (2002). Biogeography. In Entomopathogenic Nematology, R. Gaugler, ed. (New York: CABI Publishing), pp. 115-143.
  36. Bedding, R.A., and Akhurst, R.J. (1975). A simple technique for the detection of insect parasitic rhabditid nematodes in soil. Nematologica 21, 109-116.
  37. Poinar, G.O., Jr. (1979). Nematodes for Biological Control of Insects (Boca Raton, FL: CRC Press).
  38. Samish, M., and Glazer, I. (1992). Infectivity of entomopathogenic nematodes (Steinernematidae and Heterorhabditidae) to female ticks of Boophilus annulatus (Arachnida: Ixodidae). J. Med. Entomol. 29, 614-618.
  39. de Oliveira Vasconcelos, V., Furlong, J., de Freitas, G.M., Dolinski, C., Aguillera, M.M., Rodrigues, R.C.D., and Prata, M. (2004). Steinernema gla- seri Santa Rosa strain (Rhabditida: Steinernematidae) and Heterorhabditis bacteriophora CCA Strain (Rhabditida: Heterorhabditidae) as biological control agents of Boophilus microplus (Acari: Ixodidae). Parasitol. Res. 94, 201-206.
  40. Loughrin, J.H., Manukian, A., Heath, R.R., Turlings, T.C., and Tumlinson, J.H. (1994). Diurnal cycle of emission of induced volatile terpenoids by herbivore-injured cotton plant. Proc. Natl. Acad. Sci. USA 91, 11836- 11840.
  41. Ali, J.G., Alborn, H.T., and Stelinski, L.L. (2010). Subterranean herbivore- induced volatiles released by citrus roots upon feeding by Diaprepes abbreviatus recruit entomopathogenic nematodes. J. Chem. Ecol. 36, 361-368.
  42. Sun, X.-L., Wang, G.-C., Cai, X.-M., Jin, S., Gao, Y., and Chen, Z.-M. (2010). The tea weevil, Myllocerinus aurolineatus, is attracted to volatiles induced by conspecifics. J. Chem. Ecol. 36, 388-395.
  43. Rasmann, S., Ko ¨llner, T.G., Degenhardt, J., Hiltpold, I., Toepfer, S., Kuhlmann, U., Gershenzon, J., and Turlings, T.C. (2005). Recruitment of entomopathogenic nematodes by insect-damaged maize roots. Nature 434, 732-737.
  44. Boff, M.I.C., Zoon, F.C., and Smits, P.H. (2001). Orientation of Heterorhabditis megidis to insect hosts and plant roots in a Y-tube sand olfactometer. Entomol. Exp. Appl. 98, 329-337.
  45. Van Tol, R.H.W.M., Van der Sommen, A.T.C., Boff, M.I.C., Van Bezooijen, J., Sabelis, M.W., and Smits, P.H. (2001). Plants protect their roots by alerting the enemies of grubs. Ecol. Lett. 4, 292-294.
  46. Dowds, B.C.A., and Peters, A. (2002). Virulence mechanisms. In Entomopathogenic Nematology, R. Gaugler, ed. (New York: CAB International), pp. 79-98.
  47. Campbell, J.F., and Kaya, H.K. (1999). How and why a parasitic nematode jumps. Nature 397, 485-486.