Dispersal and Repulsion of Entomopathogenic Nematodes to Prenol
Biology
https://doi.org/10.3390/BIOLOGY8030058Abstract
Chemosensory cues are crucial for entomopathogenic nematodes (EPNs)—a guild of insect-killing parasitic nematodes that are used as biological control agents against a variety of agricultural pests. Dispersal is an essential element of the EPN life cycle in which newly developed infective juveniles (IJs) emerge and migrate away from a resource-depleted insect cadaver in order to search for new hosts. Emergence and dispersal are complex processes that involve biotic and abiotic factors, however, the elements that result in EPN dispersal behaviors have not been well-studied. Prenol is a simple isoprenoid and a natural alcohol found in association with EPN-infected, resource-depleted insect cadavers, and this odorant has been speculated to play a role in dispersal behavior in EPNs. This hypothesis was tested by evaluating the behavioral responses of five different species of EPNs to prenol both as a distal-chemotactic cue and as a dispersal cue. The results indicate that prenol acted as...
References (26)
- Georgis, R.; Koppenhöferb, A.M.; Laceyc, L.A.; Bélaird, G.; Duncane, L.W.; Grewalf, P.S.; Samishg, M.; Tanh, L.; Torri, P.; van Tol, R.W.H.M. Successes and failures in the use of parasitic nematodes for pest control. Biol. Control 2006, 38, 103-123. [CrossRef]
- Strauch, O.; Ehlers, R.-U. Food signal production of Photorhabdus luminescens inducing the recovery of entomopathogenic nematodes Heterorhabditis spp. in liquid culture. Appl. Microbiol. Biot. 1998, 50, 369-374. [CrossRef]
- Griffin, C.T. Perspectives on the behavior of entomopathogenic nematodes from dispersal to reproduction: traits contributing to nematode fitness and biocontrol efficacy. J. Nematol. 2012, 44, 177-184. [PubMed]
- Hu, P.J. Dauer. WormBook 2007, 1-19. [CrossRef] [PubMed]
- Wright, D.J.; Perry, R.N. Physiology and Biochemistry. In Entomopathogenic Nematology; Gaugler, R., Ed.; CABI Publishing: New York, NY, USA, 2002; pp. 145-168.
- Adams, B.J.; Nguyen, K.B. Taxonomy and systematics. In Entomopathogenic Nematology; Gaugler, R., Ed.; CABI Publishing: New York, NY, USA, 2002; pp. 1-33.
- Golden, J.W.; Riddle, D.L. The Caenorhabditis elegans dauer larva: Developmental effects of pheromone, food, and temperature. Dev. Biol. 1984, 102, 368-378. [CrossRef]
- Kaya, H.K.; Gaugler, R. Entomopathogenic nematodes. Annu. Rev. Entomol. 1993, 38, 181-206. [CrossRef]
- Rolston, A.N.; Griffin, C.T.; Downes, M.J. Emergence and dispersal patterns of two isolates of the entomopathogenic nematode Steinernema feltiae. J. Nematol. 2006, 38, 221-228. [PubMed]
- Clobert, J.; Danchin, E.; Dhondt, A.A.; Nichols, J.D. Dispersal; Oxford University Press: New York, NY, USA, 2001.
- Kaplan, F.; Alborn, H.T.; von Reuss, S.H.; Ajredini, R.; Ali, J.G.; Akyazi, F.; Stelinski, L.L.; Edison, A.S.; Schroeder, F.C.; Teal, P.E. Interspecific nematode signals regulate dispersal behavior. PLoS ONE 2012, 7, e38735.
- Baiocchi, T.; Lee, G.; Choe, D.H.; Dillman, A.R. Host seeking parasitic nematodes use specific odors to assess host resources. Sci. Rep. 2017, 7, 6270. [CrossRef] [PubMed]
- Dillman, A.R.; Guillermin, M.L.; Lee, J.H.; Kim, B.; Sternberg, P.W.; Hallem, E.A. Olfaction shapes host-parasite interactions in parasitic nematodes. Proc. Natl. Acad. Sci. USA 2012, 109, E2324-2333. [CrossRef] [PubMed]
- Ilan, T.; Kim-Shapiro, D.B.; Bock, C.H.; Shapiro-Ilan, D.I. Magnetic and electric fields induce directional responses in Steinernema carpocapsae. Int. J. Parasitol. 2013, 43, 781-784. [CrossRef] [PubMed]
- Lee, J.H.; Dillman, A.R.; Hallem, E.A. Temperature-dependent changes in the host-seeking behaviors of parasitic nematodes. BMC Biol. 2016, 14. [CrossRef] [PubMed]
- Cabanillas, H.E. Susceptibility of the boll weevil to Steinernema riobrave and other entomopathogenic nematodes. J. Invertebr. Pathol. 2003, 82, 188-197. [CrossRef]
- Dillman, A.R.; Macchietto, M.; Porter, C.F.; Rogers, A.; Williams, B.; Antoshechkin, I.; Lee, M.-M.; Goodwin, Z.; Lu, X.; Lewis, E.E.; et al. Comparative genomics of Steinernema reveals deeply conserved gene regulatory networks. Genome Biol. 2015, 16, 200. [CrossRef] [PubMed]
- Hallem, E.A.; Dillman, A.R.; Hong, A.V.; Zhang, Y.; Yano, J.M.; DeMarco, S.F.; Sternberg, P.W. A sensory code for host seeking in parasitic nematodes. Curr. Biol. 2011, 21, 377-383. [CrossRef] [PubMed]
- Kaya, H.K.; Stock, S.P. Techniques in insect nematology. In Manual of Techniques in Insect Pathology; Lacey, L., Ed.; Academic Press Limited: San Diego, CA, USA, 1997.
- Nguyen, K.B.; Hunt, D.J. Entomopathogenic Nematodes: Systematics, Phylogeny and Bacterial Symbionts; Brill: Leiden-Boston, MA, USA, 2007.
- O'Halloran, D.M.; Burnell, A.M. An investigation of chemotaxis in the insect parasitic nematode Heterorhabditis bacteriophora. Parasitology 2003, 127, 375-385. [CrossRef] [PubMed]
- Castelletto, M.L.; Gang, S.S.; Okubo, R.P.; Tselikova, A.A.; Nolan, T.J.; Platzer, E.G.; Lok, J.B.; Hallem, E.A. Diverse host-seeking behaviors of skin-penetrating nematodes. PLoS Pathog. 2014, 10, e1004305. [CrossRef] [PubMed]
- Lewis, E.E. Behavioral Ecology. In Entomopathogenic Nematology; Gauger, R., Ed.; CAB International: New York, NY, USA, 2002; pp. 205-223.
- Lewis, E.E.; Campbell, J.; Griffin, C.; Kaya, H.; Peters, A. Behavioral ecology of entomopathogenic nematodes. Biol. Control 2006, 38, 66-79. [CrossRef]
- Carrillo, M.A.; Hallem, E.A. Gas sensing in nematodes. Mol. Neurobiol. 2015, 51, 919-931. [CrossRef] [PubMed]
- Lewis, E.E.; Gaugler, R.; Harrison, R. Response of cruiser and ambusher entomopathogenic nematodes (Steinernematidae) to host volatile cues. Canad. J. Zool. 1993, 71, 765-769. [CrossRef]