Neutrosophic Sets and Systems, Vol. 63, 2024
2024
Abstract
This volume of “Neutrosophic Sets and Systems” presents a collection of cutting-edge research in the field of neutrosophy and its applications. The papers introduce and explore various extensions of neutrosophic theory, such as neutrosophic spherical cubic sets, which generalize existing fuzzy and interval-valued fuzzy sets. The research also highlights the practical use of these concepts in real-world problem-solving, including project time and cost estimation using triangular neutrosophic PERT analysis and medical diagnosis through the application of neutrosophic linguistic valued hypersoft sets. This collection demonstrates the versatility of neutrosophic methods in handling uncertainty, indeterminacy, and inconsistency across diverse areas, from fuzzy functional analysis to decision-making and optimization problems. The volume underscores the ongoing advancements in neutrosophic theory and its growing potential to provide more robust and nuanced solutions to complex challenges.
References (742)
- R. A. Borzooei, X. H. Zhang, F. Smarandache and Y. B. Jun, Commutative generalized neutrosophic ideals in BCK-algebras. Symmetry 2018, 10, 350. http://dx.doi.org/10.3390/ sym10080350
- R. A. Borzooei, H. S. Kim, Y. B. Jun and S. S. Ahn, MBJ-neutrosophic subalgebras and filters in BE-algebras, AIMS Mathematics, 7(4) (2022), 6016-6033. DOI:10.3934/math.2022335
- A. Borumand Saeid and Y. B. Jun, Neutrosophic subalgebras of BCK/BCI-algebras based on neutrosophic points. Annals of Fuzzy Mathematics and Informatics, 14 (2017), 87-97. http://dx.doi.org/10.30948/afmi.2017.14.1.87
- Y. B. Jun, Neutrosophic subalgebras of several types in BCK/BCI-algebras, Annals of Fuzzy Math- ematics and Informatics, 14 (2017), 75-86.
- Y. B. Jun, S. J. Kim and F. Smarandache, Interval neutrosophic sets with applications in BCK/BCI-algebra, Axioms 2018, 7, 23. http://dx.doi.org/10.3390/axioms7020023
- Y. B. Jun, F. Smarandache and H. Bordbar, Neutrosophic N-structures applied to BCK/BCI- algebras, Information 2017, 8, 128. http://dx.doi.org/10.3390/info8040128
- Y. B. Jun, F. Smarandache, S. Z. Song and M. Khan, Neutrosophic positive implicative N-ideals in BCK/BCI-algebras, Axioms 2018, 7, 3. DOI:10.3390/axioms7010003
- M. Khalid, N. A. Khalid, T-MBJ neutrosophic set under M-subalgebra, Neutrosophic Sets and Systems, 38 (2020), 423-438.
- S. J. Kim, S. Z. Song and Y. B. Jun, Generalizations of neutrosophic subalgebras in BCK/BCI- algebras based on neutrosophic points, Neutrosophic Sets and Systems, 20 (2018), 26-35. https: //sdbindex.com/documents/00000275/00001-06774
- S. Manokaran and M. Prakasam, On MBJ-neutrosophic β-subalgebra, Neutrosophic Sets and Sys- tems, 28 (2019), 216-227.
- M. Mohseni Takallo, R. A. Borzooei and Y. B. Jun, MBJ-neutrosophic structures and its applica- tions in BCK/BCI-algebras, Neutrosophic Sets and Systems, 23 (2018), 72-84.
- M. Mohseni Takallo and M. Aaly Kologani, MBJ-neutrosophic filters of equality algebras, Journal of Algebraic Hyperstructures and Logical Algebras, 1(2) (2020), 57-75.
- M. A. Öztürk and Y. B. Jun, Neutrosophic ideals in BCK/BCI-algebras based on neutrosophic points, Journal of the International Mathematical Virtual Institute, 8 (2018), 1-17. DOI:10.7251/ JIMVI1801001O
- E. H. Roh, E. Yang and Y. B. Jun, Intuitionistic fuzzy ordered subalgebras in ordered BCI- algebras, European Journal of Pure and Applied Mathematics, 16(3) (2023), 1342-1358. DOI: https://doi.org/10.29020/nybg.ejpam.v16i3.4832
- S. Z. Song, M. A. Öztürk and Y. B. Jun, Commutative ideals of BCI-algebras using MBJ- neutrosophic structures, Mathematics 2021, 9, 2047. https://doi.org/10.3390/math9172047
- S. Z. Song, F. Smarandache and Y. B. Jun, Neutrosophic commutative N-ideals in BCK-algebras, Information 2017, 8, 130. http://dx.doi.org/10.3390/info8040130
- S. Z. Song, M. Khan, F. Smarandache and Y. B. Jun, A novel extension of neutrosophic sets and its application in BCK/BCI-algebras, In New Trends in Neutrosophic Theory and Applications (Volume II); Pons Editions; EU: Brussels, Belgium, 2018; pp. 308-326.
- E. Yang, E. H. Roh and Y. B. Jun, Ordered BCI-algebras, Bulletin of the Section of Logic (sub- mitted).
- E. Yang, E. H. Roh and Y. B. Jun, Fuzzy ordered subalgebras in ordered BCI-algebras, Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas (submitted).
- M. Akram , Gulzar, Kar Ping shum: Single-valued neutrosophic Lie Algebras, Journal of Mathematical Resear ch with applications Mar., 2019, vol. 39, no 2, pp.141-152.
- Akram, K.P.Shum : Intuitionistic Fuzzy Lie Algebras, Southerst Asian Bulletin of Mathematics, 31: 843- 855 (2007)
- M. Akram: Anti fuzzy Lie ideals of Lie algebras, Quasigroups and Related Systems 14: 123-132 (2006).
- M. Akram, Fuzzy Lie ideals of Lie algebras withinterval valued membership functions, Quasigroups and Related Systems 16: 1-12 (2008).
- M. Akram, Redefined fuzzy Lie algebras, Quasigroups and Related Systems 16: 133-146 (2006).
- M. Akram, F.Feng, Soft intersection Lie algebras, Quasigroups and Related Systems 21: 1-10 (2013).
- M. Akram, W.A. Dudek, Interval-valued intuitionistic fuzzy Lie ideals of Lie algebras, Worlg Appl. Sci. J. 7: 812-819 (2009).
- M. Akram, Fuzzy Lie algebras, Springer, . It is nice book on fuzzy Lie algebras (2018).
- K. T. Atanassov : Intuitionistic fuzzy sets, Fuzzy Sets and Systems 20: 87-96 (1986).
- B. Davvaz : Fuzzy Lie algebras, Intern. J. Appl. Math. 6: 449-461 (2001).
- C. Gunduz (Aras) and S. Bayramov, Intuitionistic fuzzy soft modules, Computers & Mathematics with Applications62, Issue 6:, 2480-2486 (2011).
- C.Gunduz(Aras), S.Bayramov Inverse and direct system in category of fuzzy modules, Fuzzy Sets, Rough Sets and Multivalued Operations and Applications, 2: 11-25 (2011).
- J. E. Humphreys : Introduction to Lie Algebras and Representation Theory, Springer, New York 1972.
- Q. Keyun, Q. Quanxi and C. Chaoping : Some properties of fuzzy Lie algebras, J. Fuzzy Math. 9: 985-989 (2001).
- C. G. Kim and D.S. Lee : Fuzzy Lie ideals and fuzzy Lie subalgebras, Fuzzy Sets and Systems 94: 101-107 (1998).
- P.K.Maji, R.Bismas, A.R.Roy, Fuzzy soft sets, The Journal of Fuzzy Mathematics 9(3): 589-602 (2001).
- P.K.Maji :Neutrosophic soft set, Annals of Fuzzy Mathematics and Informatics 5: 157-168 (2012)
- D. Molodtsov, Soft set theory-first results, Comput. Math. Appl.37: 19-31 (1999).
- A. Rosenfeld, Fuzzy groups, J. Math. Anal. Appl. 35: 512-517 (1971)
- F.Smarandache Neutrosophic set, a generalization of the intuitionistic fuzzy sets, inter. J. Pure Appl. Math. 24: 287-297 (2005).
- F.Smarandache, Neutrosophy. Neutrosophic Probability, Set, and Logic, ProQuest Information & Learning, Ann Arbor, Michigan, USA, 105 p., (1998).
- K.Veliyeva, S.Abdullayev and S.A. Bayramov : Derivative functor of inverse limit functor in the category of neutrosophic soft modules, Proceedings of the Institute of Mathematics and Mechanics 44(2) (267-284) (2018)
- K. Veliyeva, S.Bayramov, Neutrosophic soft modules, Journal of Advances in Mathematics, 14(2): 7670- 7681 (2018).
- S. E. Yehia : Fuzzy ideals and fuzzy subalgebras of Lie algebras, Fuzzy Sets and Systems 80: 237-244 (1996).
- L.A. Zadeh : Fuzzy sets, Information and Control 8: 338-353 (1965)
- S. Abdullayev, K. Veliyeva, Introduction of neutrosophic soft lie algebras REFERENCES 1. Broumi, S. ;Smarandache, F. Correlation coefficient of interval neutrosophic sets, AppliedMechanics and Materials, 436(2013) 511-517.
- Jun, Y.B. ; Kim, C.S. ; and Yang, K.O. Cubic sets, Annals of Fuzzy Mathematics and Informatics, 4(3) (2012) 83-98.
- Jun, Y.B. ; Kim, C.S. ; and Kang, M.S. Cubic subalgebra and ideals of BCK/BCI-algebras, Far East.J.Math. Sci.(FJMS), 44 (2010)239-250.
- Jun, Y.B. ; Kim, C.S. ; and Yang, K.O. Smarandache, F. Neutrosophic Cubic sets, NewMathematics and Natural Computation, (2015) .
- KutluGündoğdu, Fatmaa ;
- * | Kahraman, Cengiz Spherical fuzzy sets and spherical fuzzy TOPSIS method Journal of Intelligent & Fuzzy Systems, (2019) vol. 36, no. 1, pp. 337-352.
- Gündogdu FK, Kahraman C A novel VIKOR method using spherical fuzzy sets and its application to warehouse site selection. J Intell Fuzzy Syst,(2019) 37(1):1197-1211.
- Smarandache, F. A Unifying Field in Logics. Neutrosophy ,Neutrosophic Probability, Set and Logic, Rehoboth: American Research Press,(1999).
- Smarandache, F. Neutrosophic set-a generalization of the intuitionistic fuzzy set, Journal of Defense Resource Management, 1(1)(2010) .
- TanmoyMahapatra, ;Sankarsahoo, ; Ganesh Ghorai, ; Madhumangal Pal Interval valued m-polar fuzzy planar graph and its applications, Artificial Intelligence Review,(2021) 54:1649-1675.
- TanmoyMahapatra, ; Ganesh Ghorai, ; Madhumangal Pal Fuzzy fractional coloring of fuzzy graphs with its applications , Journal of Ambient Intelligence and Humanized Computing, (2020) 11:5771-5784 .
- TanmoyMahapatra, ; Ganesh Ghorai, ; Madhumangal Pal Fuzzy coloring of fuzzy m-polar fuzzy planar graph and its applications, Journal of Intelligent & fuzzy systems,(2018) vol 35, no 6, pp. 6379-6391.
- Zadeh, L. A. Fuzzy sets, Information and Control 8(1965) 338-353.
- Smarandache, F. A unifying field in logics. Neutrosophy: Neutrosophic probability, set and logic. American Research Press: Rehoboth, USA, 1999.
- Alblowi, S.A.; Salama, A.A.; Eisa, M. New concepts of neutrosophic sets. Int. J. Math. Comput. Appl. Res. 2013, Volume 4, 59-66.
- Dey, S.; Ray, G.C. Covering properties in neutrosophic topological spaces. Neutrosophic Sets Syst. 2022, Volume 51, 525-537.
- Karatas, S.; Kuru, C. Neutrosophic topology. Neutrosophic Sets Syst. 2016, Volume 13, 90-95.
- Ray, G.C.; Dey, S. Neutrosophic point and its neighbourhood structure. Neutrosophic Sets Syst. 2021, Volume 43, 156-168.
- Ray, G.C.; Dey, S. Relation of quasi-coincidence for neutrosophic sets. Neutrosophic Sets Syst. 2021, Volume 46, 402-415.
- Salama, A.A.; Alblowi, S.A. Neutrosophic set and neutrosophic topological spaces. IOSR J. Math. 2012; Volume 3, 31-35. http://dx.doi.org/10.9790/5728-0343135
- José Sanabria, Carlos Granados and Leslie Sánchez , Properties of Co-local Function and Related Φ-operator in Ideal Neutrosophic Topological Spaces
- Salama, A.A.; Smarandache, F. Neutrosophic local function and generated neutrosophic topology. Neutrosophic Knowledge 2020; Volume 1, 1-6.
- Sanabria, J.; Granados, C.; Rosas, E. Closure and kernel defined through neutrosophic points. Baghdad Sci. J. (under review).
- Smarandache, F. Foundation of revolutionary topologies: An overview, examples, trend analysis, research issues, challenges, and future directions. Neutrosophic Syst Appl. 2024, Volume 13, 45-66. https://doi.org/10.61356/j.nswa.2024.125
- Smarandache F., Unifying Field in Logics. Neutrosophy: Neutrosophic Probability, Set and Logic., Rehoboth: American Research Press,1998.
- Smarandache F., Neutrosophic set, a generalisation of the intuitionistic fuzzy sets, Int. J. Pure Appl. Math. 2005; 24 ; 287-297.
- Jayagowri.P, G. Geetharamani, A Critical Path Problem Using Intuitionistic Trapezoidal Fuzzy Number, Applied Mathematical Sciences, Vol. 8, 2014, no. 52, 2555 -2562.
- Thaeir Ahmed Saadoon Al Samman et al , Fuzzy PERT for project management, International Journal of Advances in Engineering and Technology, Sept., 2014.Vol. 7, Issue 4, pp. 1150-1160.
- Yang. M. F et al, Applying fuzzy time distribution in PERT Model, Proceedings of the International Multi Conference of Engineers and Computer Scientists 2014 Vol II, IMECS 2014, March 12 -14, 2014, Hong Kong.
- Mete Mazluma et al, CPM, PERT and Project management with fuzzy logic technique and implementation on a business, Procedia -Social and Behavioral Sciences 210 ( 2015 ) 348 357.
- Smarandache F., Subtraction and Division of Neutrosophic Numbers, Critical Review. Volume XIII, 2016.
- Amit Adate et al, Analysis of project Planning using cpm and pert, International Journal of Computer Science and Mobile Computing, Vol.6 Issue.10, October-2017, pg. 24-25.
- Abdel-Baset M, Mohamed M, Zhou Y, Smarandache. F, A Critical Path Problem using Triangular Neutrosophic Number, IEEE International Conference on Innovations in Intelligent Systems and Applications (INISTA), Gdynia Maritime, University, Gdynia, Poland, 3-5 July 2017.
- Mohamed. M, Abdel-Baset M, Abdel-Nasser Hussien, Smarandache. F, Neutrosophic Operations Research, Brussels: Pons Publishing House, 2017Vol 1, 2017, pp. 145-155.
- Sudha. G et al, Solving Critical Path Problem using Triangular Intuitionistic Fuzzy Number, Intern. J.Fuzzy Mathematical Archive, Vol. 14, No. 1, 2017, 1-8.
- Onifade Morakinyo Kehindeet et al, Application of Project Evaluation and Review Technique (PERT) in road construction projects in Nigeria, European Project Management Journal, Volume 7, Issue 2, December 2017.
- Smarandache F, Mohamed M, Zhou Y, Abdel-Baset M, A Critical Path Problem Using Triangular Neutrosophic Number." 2017 IEEE International Conference on INnovations in Intelligent SysTems and Applications (INISTA), Gdynia Maritime University, Gdynia, Poland, 3-5 July 2017 (2017): 403- 407.
- Avishek Chakraborty et.al, Different Forms of Triangular Neutrosophic Numbers, De- Neutrosophication Techniques, and their Applications, MDPI, Symmetry, Vol.10 (327), 2018, 1-27.
- Muhammad Kholil, Bonitasari Nurul Alfa and Madjumsyah Hariadi, Scheduling of House Development Projects with CPM and PERT Method for Time Efficiency, IOP Conf. Series: Earth and Environmental Science, 140, 2018, pp. 1-8.
- Priyadharsini.S, Kungumaraj.E, Santhi. R, An Evaluation of Triangular Neutrosophic PERT Analysis for Real-Life Project Time and Cost Estimation
- Surapati Pramanik et al., Contributions of Selected Indian Researchers to Multi Attribute Decision Making in Neutrosophic Environment: An Overview, Neutrosophic Sets and Systems, Vol. 20, 2018.
- Samah Ibrahim Abdel Aal, Mahmoud M. A. Abd Ellatif, and Mohamed Monir Hassan, Two Ranking Methods of Single Valued Triangular Neutrosophic Numbers to Rank and Evaluate Information Systems Quality, Neutrosophic Sets and Systems, Vol.19, 2018, pp. 132-141
- Murali.M and Surya.R, Neutrosophic Project Evaluation and Review Techniques, Neutrosophic Sets and Systems, Vol.24, 2019, pp. 1-9.
- Abdel-Baset, M.; Chang, V.; Gamal, A.; Smarandache, F. An integrated neutrosophic ANP and VIKOR method for achieving sustainable supplier selection: A case study in importing field. Comput. Ind. 2019, 106, 94-110.
- Bolturk, E.; Gülbay, M.; Kahraman, C. Sustainable energy selection based on interval-valued intuitionistic fuzzy and Neutrosophic aggregation operators. J. Intell. Fuzzy Syst. 2020, 39, 6553-6563.
- Tapia, J.F.D. Evaluating negative emissions technologies using neutrosophic data envelopment analysis. J. Clean. Prod. 2021, 286, 125494.
- Abdel-Basset, M.; Gamal, A.; Moustafa, N.; Askar, S.S.; Abouhawwash, M. A Risk Assessment Model for Cyber-Physical Water and Wastewater Systems: Towards Sustainable Development. Sustainability 2022, 14, 4480.
- M. Abdel-Basset, A. Gamal, R. Mohamed, M. Abouhawwash, A. Almutairi et al., "Efficient model for emergency departments: real case study," Computers, Materials & Continua, vol. 70, no.2, pp. 4053-4073, 2022.
- Mohamed Abdel-Basset, Abduallah Gamal, Karam M. Sallam, Ibrahim M. Hezam, Ahmad M. Alshamrani, "Sustainable Flue Gas Treatment System Assessment for Iron and Steel Sector: Spherical Fuzzy MCDM-Based Innovative Multistage Approach", International Journal of Energy Research, vol. 2023, Article ID 6645065, 25 pages, 2023.
- S. Rahnamay Bonab, S. Jafarzadeh Ghoushchi, M. Deveci, and G. Haseli, "Logistic autonomous vehicles assessment using decision support model under spherical fuzzy set integrated Choquet integral approach," Expert Systems with Applications, vol. 214, article 119205, 2023.
- Jeyaraman M, Iswariya S, A new approach for the statistical convergence overnon-Archimedan fields in Neutrosophic normed spaces, Neutrosophic Systems with Applications, 9, 81-90, 2023.
- Jdid, M., & Smarandache, F, Optimal Agricultural Land Use: An Efficient Neutrosophic Linear Programming Method. Neutrosophic Systems with Applications, 10, 53-59, (2023).
- Manshath. A, Kungumaraj.E, Lathanayagam.E, Clement Joe Anand. M, Nivetha Martin,Elangovan Muniyandy,S. Indrakumar. (2024). Neutrosophic Integrals by Reduction Formula and Partial Fraction Methods for Indefinite Integrals. International Journal of Neutrosophic Science, 23 (1), 08-16, 2024
- Kungumaraj.E, Durgadevi.S, Tharani. N.P, Heptagonal Neutrosophic Topology, Neutrosophic Sets and Systems, Vol.60, 335 -356, 2023.
- Kungumaraj. E, Lathanayagam. E, Utpal Saikia, Clement Joe Anand. M, Sakshi Taaresh Khanna, Nivetha Martin, Mohit Tiwari, Seyyed Ahamad Edalatpanah, Neutrosophic Topological Vector Spaces and its Properties, International Journal of Neutrosophic Science, Vol.23, No.2, 63-76, 2024
- Huidobro, P., Alonso, P., Jani, V., & Montes, S. (2022). Convexity and level sets for interval- valued fuzzy sets. Fuzzy Optimization and Decision Making, 21(4), 553-580.
- Zadeh, L.A., (1965). Fuzzy sets. Information and Control, 8(3), 338?353. doi:10.1016/s0019- 9958(65)90241-x.
- Atanassov, Krassimir, T. (1999). Intuitionistic fuzzy sets. Intuitionistic fuzzy sets. Physica, Heidelberg. 1-137.
- Neutrosophic Sets and Systems, Vol. 63, 2024 93
- Vidhya K , Saraswathi A and Said Broumi, An Efficient Approach for Solving Time-Dependent Shortest Path Problem under Fermatean Neutrosophic Environment
- Atanassov, Krassimir, T. (1999). Interval valued intuitionistic fuzzy sets. Intuitionistic Fuzzy Sets. Physica, Heidelberg, 139-177.
- Smarandache, Florentin. (1999). A unifying field in Logics: Neutrosophic Logic. Philosophy. American Research Press. 1-141.
- De, S. K., Biswas, R., & Roy, A. R. (2000). Some operations on intuitionistic fuzzy sets. Fuzzy sets and Systems. 114(3), 477-484.
- Senapati, T., & Yager, R. R. (2020). Fermatean fuzzy sets. Journal of Ambient Intelligence and Humanized Computing. 11, 663-674.
- Manirathinam, Thangaraj, et al. (2023). Sustainable renewable energy system selection for self- sufficient households using integrated fermatean neutrosophic stratified AHP-MARCOS approach. Renewable Energy. 119292.
- Broumi, Said, et al. (2022). Theory and Applications of Fermatean Neutrosophic Graphs. Neutrosophic Sets and Systems. 50, 248-286.
- Zhang, Hong-yu, Jian-qiang Wang, and Xiao-hong Chen. (2014). Interval neutrosophic sets and their application in multicriteria decision making problems. The Scientific World Journal.
- Majumdar, Pinaki, and Syamal Kumar Samanta. (2014). On similarity and entropy of neutrosophic sets. Journal of Intelligent & Fuzzy Systems. 26(3), 1245-1252.
- Smarandache, Florentin, Y. Zhang, and Sunderraman, R. (2009). Single valued neutrosophic sets. Neutrosophy: neutrosophic probability, set and logic. 4: 126-129.
- Ye, Jun. (2014). Clustering methods using distance-based similarity measures of singlevalued neutrosophic sets. Journal of Intelligent Systems. 23(4): 379-389.
- Ye, Jun. (2015). Trapezoidal neutrosophic set and its application to multiple attribute decision- making. Neural computing and Applications. 26: 1157-1166.
- Broumi, Said, et al. (2022). Interval-valued fermatean neutrosophic graphs. Collected Papers. Volume XIII: On various scientific topics: 496.
- Stephen, S., and M. Helen. (2021). Interval-valued Neutrosophic Pythagorean Sets and their Application Decision Making using IVNP-TOPSIS. International Journal of Innovative Research in Science. Engineering and Technology. 10(1), 14571-14578.
- Dubois, D. J. (1980). Fuzzy sets and systems: theory and applications. Academic press. 144.
- Baba, L. (2013). Shortest path problem on intuitionistic fuzzy network. Annals of Pure and Applied Mathematics. 5(1), 26-36.
- Kumar, R., Jha, S., & Singh, R. (2017). Shortest path problem in network with type-2 triangular fuzzy arc length. Journal of Applied Research on Industrial Engineering, 4(1), 1-7.
- Nayeem, S. M. A., & Pal, M. (2005). Shortest path problem on a network with imprecise edge weight. Fuzzy Optimization and Decision Making, 4, 293-312.
- Okada, S., & Soper, T. (2000). A shortest path problem on a network with fuzzy arc lengths. Fuzzy sets and systems, 109(1), 129-140.
- Neutrosophic Sets and Systems, Vol. 63, 2024 94
- Vidhya K , Saraswathi A and Said Broumi, An Efficient Approach for Solving Time-Dependent Shortest Path Problem under Fermatean Neutrosophic Environment
- Okada, S. (2004). Fuzzy shortest path problems incorporating interactivity among paths. Fuzzy Sets and Systems, 142(3), 335-357.
- Mukherjee, S. (2012). Dijkstra's algorithm for solving the shortest path problem on networks under intuitionistic fuzzy environment. Journal of Mathematical Modelling and Algorithms, 11, 345- 359.
- Klein, C. M. (1991). Fuzzy shortest paths. Fuzzy sets and systems, 39(1), 27-41.
- Vidhya kannan, Saraswathi Appasamy, and Ganesan Kandasamy (2022). Comparative study of fuzzy Floyd Warshall algorithm and the fuzzy rectangular algorithm to find the shortest path. AIP Conference Proceedings. 2516(1). AIP Publishing.
- Hernandes, F., Lamata, M. T., Verdegay, J. L., & Yamakami, A. (2007). The shortest path problem on networks with fuzzy parameters. Fuzzy sets and systems, 158(14), 1561-1570.
- Broumi, Said, et al. (2019). Shortest path problem in fuzzy, intuitionistic fuzzy and neutrosophic environment: an overview. Complex and Intelligent Systems. 5, 371-378.
- Liu, Ruxiang. (2020). Study on single?valued neutrosophic graph with application in shortest path problem. CAAI Transactions on Intelligence Technology. 5(4): 308-313.
- Cakir, Esra, Ziya Ulukan, and Tankut Acarman. (2022). Time-dependent Dijkstra's algorithm under bipolar neutrosophic fuzzy environment. Journal of Intelligent & Fuzzy Systems 42(1): 227-236.
- Basha, M. Asim, and M. Mohammed Jabarulla. (2023). Neutrosophic Pythagorean Fuzzy Shortest Path in a Network. Journal of Neutrosophic and Fuzzy Systems. 6(1): 21-1.
- Rajan, Jansi, and Mohana Krishnaswamy. (2020). Similarity measures of Pythagorean neutrosophic sets with dependent neutrosophic components between T and F. Journal of New Theory. 33: 85-94.
- Raut, Prasanta Kumar, et al. (2023). Calculation of shortest path on Fermatean Neutrosophic Networks. Neutrosophic Sets and Systems. 57(1): 22.
- Broumi, S., S. krishna Prabha, & Vakkas Ulucay. (2023). Interval-Valued Fermatean Neutrosophic Shortest Path Problem via Score Function. Neutrosophic Systems With Applications, 11, 1-10.
- W. Huang and L. Ding, (2012). The shortest path problem on a fuzzy time-dependent network, in IEEE Transactions on Communications. 60(11), 3376?3385.
- X. Liao, J. Wang and L. Ma, (2020). An algorithmic approach for finding the fuzzy constrained shortest paths in a fuzzy graph, Complex Intell. Sys.
- Zadeh, L. A. (1965). Fuzzy sets. Information and Control, Volume 8(3), 338-353.
- Smarandache, F. (2004). Neutrosophic Set, A Generalization of the Intuitionistic Fuzzy Set, International Journal of Pure and Applied Mathematics, 24(3), 287-297
- Atanassov, K. T. (1986). Intuitionistic Fuzzy Set. Fuzzy Sets and Systems, 20, 87-96.
- Salomon, D. (2006). Curves and Surfaces for Computer Graphics, Springer Science Business Media, Inc., New York, 11-15.
- Zaidi, N. Z., and Zulkifly, M. I. E. 2021. Intuitionistic Fuzzy Bézier Curve Approximation Model for Uncertainty Data. Proceeding of Sciences and Mathematics Faculty of Sciences UTM, 3, 42-53.
- Zulkifly, M. I. E., and Wahab, A. F. (2025). Intuitionistic Fuzzy B-Spline Surface Modeling for 3- Dimensional Data Problem. Malaysian journal of fundamental and applied sciences, 11(1), 21-23.
- Wahab, A. F., Zulkifly, M. I. E. and Husain M. S. (2016). Bezier curve modeling for intuitionistic fuzzy data problem. AIP Proceedings, 1750(1), 030047-1-030047-7.
- Zulkifly, M. I. E. and Wahab, A. F. (2018). Intuitionistic fuzzy bicubic Bezier surface approximation. AIP Proceedings, 1974(1), 020064.
- Jacas, J., Monreal, A. and Recasens, J. (1997). A model for CAGD using fuzzy logic, International Journal of Approximate Reasoning, 16(3-4 SPEC. ISS.), 289-308.
- Gallo, G., Spagnuolo, M., and Spinello, S. (1998). Rainfall Estimation from Sparse Data with Fuzzy B- Splines, Journal of Geographic Information and Decision Analysis, 2(2), 194-203.
- Hu, C. Y., Patrikalakis, N. M., and Ye, X. (1996). Robust interval solid modeling Part I: Representations, CAD Computer Aided Design, 28(10), 807-817.
- Zimmermann, H.J. (2001). Fuzzy Set Theory-And Its Applications Springer Science & Business Media. New York, NY, USA.
- Blaga, P. and Bede, B. (2006). Approximation by fuzzy B-spline series, Journal of Applied Mathematics and Computing, 20(1-2), 157-169.
- Saga, S. and Makino, H. (1993). Fuzzy spline interpolation and its application to online freehand curve identification, Proc. 2nd IEEE International Conf. on Fuzzy Systems, 1183-1190.
- Topal, S. and Tas, F. (2018). Bézier Surface Modeling for Neutrosophic Data Problems. Neutrosophic set and system University of New Mexico, 19, 19-23.
- Tas, F. and Topal, S. (2017). Bezier Curve Modeling for Neutrosophic Data Problem. Neutrosophic set and system University of New Mexico, 16, 3-5.
- Alias S. and Mohamad, D. (2017). A Review of the Neutrosophic Set and Its Development. Discovering Mathematics. 3(2), 61-69.
- Smarandache, F. (2005). A Unifying Field in Logics: Neutrosophic Logic. Neutrosophy, Neutrosophic Set, Neutrosophic Probability: Neutrosophic Logic. Neutrosophy, Neutrosophic Set, Neutrosophic Probability. Infinite Study.
- Wahab, A. F., Ali, J. M., Majid, A. A., and Tap, A. O. M. (2004). Fuzzy Set in Geometric Modeling, Proceedings International Conference on Computer Graphics, Imaging and Visualization, CGIV, Penang, 227-232.
- Wahab, A. F., Ali, J. M., Majid, A. A. and Tap, A. O. M. (2010). Penyelesaian Masalah Data Ketakpastian Menggunakan Splin-B Kabur, Sains Malaysiana, 39(4), 661-670.
- Wahab, A. F., Ali, J. M. and Majid, A. (2009). A. Fuzzy geometric modeling, Sixth International Conference on Computer Graphics, Imaging and Visualization, 276-280.
- Rosli, S. N. I and Zulkiflyi , M. I. E, Neutrosophic B-splinei Surface Approximationi Modeli for 3-Dimensional Datai Collection
- Piegl, L. and Tiller, W. (1995). The NURBS Book (Springer-Verlag Berlin Heidelberg, Germany).
- Siti Nur Idara Rosli, & Mohammad Izat Emir Zulkifly. (2023). A Neutrosophic Approach for B-Spline Curve by Using Interpolation Method. Neutrosophic Systems With Applications, 9, 29-40. https://doi.org/10.61356/j.nswa.2023.43.
- Siti Nur Idara Rosli, & Mohammad Izat Emir Zulkifly. (2023). Neutrosophic Bicubic B-spline Surface Interpolation Model for Uncertainty Data. Neutrosophic Systems With Applications, 10, 25-34. https://doi.org/10.61356/j.nswa.2023.69.
- Siti Nur Idara Rosli, & Mohammad Izat Emir Zulkifly. (2023). 3-Dimensional Quartic Bézier Curve Approximation Model by Using Neutrosophic Approach. Neutrosophic Systems With Applications, 11, 11-21. https://doi.org/10.61356/j.nswa.2023.78
- Mohanta, K.K., Sharanappa, D.S., Dabke, D., Mishra, L.N., Mishra, V.N. (2022). Data envelopment analysis in the context of spherical fuzzy inputs and outputs, European Journal of Pure and Applied Mathematics, 15(3), pp. 1158-1179.
- Sharma, M.K., Sadhna, Bhargava, A.K., Kumar, S., Rathour, L., Mishra, L.N., Pandey, S. (2022). A Fermatean Fuzzy Ranking Function In Optimization Of Intuitionistic Fuzzy Transportation Problems, Advanced Mathematical Models and Applications, 7(2), pp. 191-204.
- Sharma, M.K., Dhiman, N., Mishra, L.N., Mishra, V.N., Sahani, S.K. (2021). Mediative Fuzzy Extension Technique and Its Consistent Measurement in the Decision Making of Medical Application, Mathematical Problems in Engineering, 2021, 5530681.
- Topal, Selçuk & Duran, Volkan & Smarandache, Florentin. (2021). An application of neutrosophic logic in the confirmatory data analysis of the satisfaction with life scale. Journal of fuzzy extension and applications, 2(3), 262-282.
- Debnath, S. (2021). Neutrosophication of statistical data in a study to assess the knowledge, attitude, and symptoms of reproductive tract infection among women. Journal of Fuzzy Extension and Applications, 2(1), 33-40. doi: 10.22105/jfea.2021.272508.1073
- Radha, R. & Mary, A. & Said, Broumi & Jafari, Saeid & Edalatpanah, S A. (2023). Improved correlation coefficients in neutrosophic statistics for COVID patients using pentapartitioned neutrosophic sets. In Cognitive Intelligence with Neutrosophic Statistics in Bioinformatics (pp. 237-258). Academic Press.
- Smarandache, F. (2013). n-Valued Refined Neutrosophic Logic and Its Applications to Physics, 4
- Chatterjee, R.; Majumdar, P.; Samanta. (2015). Single-valued neutrosophic multisets. Annals of Fuzzy Mathematics and Informatics, 499-514.
- Girish, K. P., and Jacob John, S. (2011). Rough multisets and information multisystems. Advances in Decision Sciences.
- Alkhazaleh, S. (2016). Time-neutrosophic soft set and its applications. Journal of Intelligent and Fuzzy Systems, 30(2), 1087-1098.
- Peng, X.; Dai, J. A Bibliometric Analysis of Neutrosophic Set: Two Decades Review from 1998 to 2017. Artificial Intelligence Review 2020, 53, 199-255.
- Yasser, I.; Twakol, A.; El-Khalek, A.; Samrah, A.; Salama, A.A. COVID-X: Novel Health-Fog Framework Based on Neutrosophic Classifier for Confrontation Covid-19. Neutrosophic Sets and Systems 2020, 35, 1.
- Tan, R.; Zhang, W. Decision-Making Method Based on New Entropy and Refined Single- Valued Neutrosophic Sets and Its Application in Typhoon Disaster Assessment. Applied Intelligence 2021, 51, 283-307.
- Jdid, M.; Alhabib, R.; Salama, A.A. The Basics of Neutrosophic Simulation for Converting Random Numbers Associated with a Uniform Probability Distribution into Random Variables Follow an Exponential Distribution. Neutrosophic Sets and Systems 2023, 53, 22.
- Biro, C. About a New Smarandache-Type Sequence. Smarandache Notions Journal 2001, 12, 284- 287.
- Smarandache, F.; Jdid, M. On Overview of Neutrosophic and Plithogenic Theories and Applications. Prospects for Applied Mathematics and Data Analysis (PAMDA) 2023, 2.
- Abdelhafeez, A.; Fakhry, A.E.; Khalil, N.A. Neutrosophic Sets and Metaheuristic Optimization: A Survey. Neutrosophic and Information Fusion (NIF) 2023, 15, 41-47.
- Garg, H. A New Exponential-Logarithm-Based Single-Valued Neutrosophic Set and Their Applications. Expert Systems with Applications 2024, 238, 121854.
- Majumder, P.; Paul, A.; Pramanik, S. Single-Valued Pentapartitioned Neutrosophic Weighted Hyperbolic Tangent Similarity Measure to Determine the Most Significant Environmental Risks during the COVID-19 Pandemic. Neutrosophic Sets and Systems 2023, 57, 4.
- Song, S.; Li, Y.; Jia, Z.; Shi, F. Salient Object Detection Based on Optimization of Feature Computation by Neutrosophic Set Theory. Sensors 2023, 23, 8348.
- Salem, H.; Shams, M.Y.; Elzeki, O.M.; Abd Elfattah, M.; F Al-Amri, J.; Elnazer, S. Fine-Tuning Fuzzy KNN Classifier Based on Uncertainty Membership for the Medical Diagnosis of Diabetes. Applied Sciences 2022, 12, 950.
- Power, D.; Tabirca, S.; Tabirca, T. Java Concurent Program for the Samarandache Function. Smarandache Notions Journal 2002, 13, 72-85.
- Maram, B.; Gnanasekar, J.M.; Manogaran, G.; Balaanand, M. Intelligent Security Algorithm for UNICODE Data Privacy and Security in IOT. Service Oriented Computing and Applications 2019, 13, 3-15.
- Febres, G.L. A Proposal about the Meaning of Scale, Scope and Resolution in the Context of the Information Interpretation Process. Axioms 2018, 7, 11, doi:10.3390/axioms7010011.
- A. A. Salama, Zahraa Tarek, Eman Yousif Darwish, Sherif Elseuofi, Mahmoud Y. Shams, Neutrosophic Encoding and Decoding Algorithm for ASCII Code System
- Maldonado, P.A.C.; Martinez, Y.P.; Escobar, G.S. Neutrosophic Statistics Methods Applied to Demonstrate the Extra-Contractual Liability of the State from the Administrative Organic Code. Neutrosophic Sets and Systems 2019, 27.
- Sleem, A.; Abdel-Baset, M.; El-henawy, I. PyIVNS: A Python Based Tool for Interval-Valued Neutrosophic Operations and Normalization. SoftwareX 2020, 12, 100632, doi:10.1016/j.softx.2020.100632.
- Chalapathi, T.; Babu, H. Enumeration of Neutrosophic Involutions over Finite Commutative Neutrosophic Rings. Neutrosophic Sets and Systems 2023, 58, 8.
- Mohammed, A.A.; Khalid, H.E.; Gadama, R.W.; Gadama, T.P. Neutrosophic Relative Importance Analysis of the Construction Projects Delay of Mosul City After Its Liberation from ISIS Occupation. Neutrosophic Sets and Systems 2023, 58, 30.
- Priyadarshini, I.; Cotton, C. A Novel LSTM-CNN-Grid Search-Based Deep Neural Network for Sentiment Analysis. The Journal of Supercomputing 2021, 77, 13911-13932.
- Wu, Y.; Dai, X. Encryption of Accounting Data Using DES Algorithm in Computing Environment. Journal of Intelligent & Fuzzy Systems 2020, 39, 5085-5095.
- Amin, B.; Salama, A.A.; El-Henawy, I.M.; Mahfouz, K.; Gafar, M.G. Intelligent Neutrosophic Diagnostic System for Cardiotocography Data. Computational Intelligence and Neuroscience 2021, 2021, 1-12.
- Zhang, W.; Zhao, Y.; Fan, S. Cryptosystem Identification Scheme Based on ASCII Code Statistics. Security and Communication Networks 2020, 2020, 1-10.
- Elshoush, H.T.; Mahmoud, M.M.; Altigani, A. A New High Capacity and Secure Image Realization Steganography Based on ASCII Code Matching. Multimedia Tools and Applications 2022, 1-47.
- Elmogy, A.; Bouteraa, Y.; Alshabanat, R.; Alghaslan, W. A New Cryptography Algorithm Based on ASCII Code. In Proceedings of the 2019 19th International Conference on Sciences and Techniques of Automatic Control and Computer Engineering (STA);
- Shankar, T.N.; Sahoo, G. Cryptography by Karatsuba Multiplier with ASCII Codes. International journal on computer applications 2010, 53-60.
- Sharma, H.K.; Tomar, R.; Patni, J.C. HRJ_encryption: An ASCII Code Based Encryption Algorithm and Its Implementation. In Proceedings of the 2015 2nd International Conference on Computing for Sustainable Global Development (INDIACom);
- Elshoush, H.T.; Ali, I.A.; Mahmoud, M.M.; Altigani, A. A Novel Approach to Information Hiding Technique Using ASCII Mapping Based Image Steganography. J. Inf. Hiding Multim. Signal Process. 2021, 12, 65-82.
- Xiong, Q.; Zhang, X.; Liu, W.; Ye, S.; Du, Z.; Liu, D.; Zhu, D.; Liu, Z.; Yao, X. An Efficient Row Key Encoding Method with ASCII Code for Storing Geospatial Big Data in HBase. Isprs International Journal of Geo-Information 2020, 9, 625.
- Ai, T.; Yang, Z.; Hou, H.; Zhan, C.; Chen, C.; Lv, W.; Tao, Q.; Sun, Z.; Xia, L. Correlation of Chest CT and RT-PCR Testing for Coronavirus Disease 2019 (COVID-19) in China: A Report of 1014 Cases. Radiology 2020, 296, E32-E40.
- A. A. Salama, Zahraa Tarek, Eman Yousif Darwish, Sherif Elseuofi, Mahmoud Y. Shams, Neutrosophic Encoding and Decoding Algorithm for ASCII Code System
- Salama, A.A.; Smarandache, F.; Kromov, V. Neutrosophic Closed Set and Neutrosophic Continuous Functions. Collected Papers. Volume IX: On Neutrosophic Theory and Its Applications in Algebra 2022, 25.
- Salama, A.A.; Eisa, M.; Abdelmoghny, M.M. Neutrosophic Relations Database; Infinite Study, 2014;
- Salama, A.A.; Alblowi, S.A. Generalized Neutrosophic Set and Generalized Neutrosophic Topological Spaces; Infinite Study, 2012;
- Salama, A.A.; Bhatnagar, R.; Alharthi, N.S.; Tolba, R.E; Shams M. Y; Neutrosophic Fuzzy Data Science and Addressing Research Gaps in Geographic Data and Information Systems. International Conference on Intelligence of Things Intelligence of Things: Technologies and Applications 2023, 187, 128-139.
- References
- Kuhn T, Basch P, Barr M, Yackel T. (2015). Medical Informatics Committee of the American College of Physicians. Clinical documentation in the 21st century: executive summary of a policy position paper from the American College of Physicians. Annals of Internal Medicine, 162(4), 301-303. doi: 10.7326/M14-2128.
- Verhoog, S., Eijgermans, D.G.M., Fang, Y. (2022). Contextual determinants associated with children's and adolescents' mental health care utilization: a systematic review. European Child & Adolescent Psychiatry, (2022). https://doi.org/10.1007/s00787-022-02077-5
- Pienta, K.J., Hammarlund EU, Axelrod R, Brown JS, Amend SR. (2020). Poly-aneuploid cancer cells promote evolvability, generating lethal cancer. Evolutionary Applications, 13(7), 1626-1634. doi: 10.1111/eva.12929.
- Relling MV, Evans WE. (2015). Pharmacogenomics in the clinic. Nature. 526, 343-350. doi: 10.1038/nature15817.
- Kho AN, Cashy JP, Jackson KL, Pah AR, Goel S, Boehnke J, Humphries JE, Kominers SD, Hota BN, Sims SA, Malin BA, French DD, Walunas TL, Meltzer DO, Kaleba EO, Jones RC, Galanter WL. (2015). Design and implementation of a privacy preserving electronic health record linkage tool in Chicago. Journal of the American Medical Informatics Association, 22(5), 1072-1080. doi: 10.1093/jamia/ocv038.
- Das R, Mukherjee A, Tripathy BC. (2022). Application of Neutrosophic Similarity Measures in Covid-19. Annals of Data Science. 9(1), 55-70. doi: 10.1007/s40745-021-00363-8.
- Zadeh, L. A. (1975). The Concept of a Linguistic Variable and its Application to Approximate Reasoning-II. Information Sciences, 8, 199-249.
- Delgado, M., Verdegay, L. J., Vila, M. A. (1992). Linguistic decision-making models. International Journal of Intelligent, 7, 479-492. Doi: https://doi.org/10.1002/int.4550070507
- Jiang, L., Liu, H., Cui, N. (2021). A semantic model for computing with flexible linguistic expressions and the application in MCGDM. Computers & Industrial Engineering, 158, 107409. Doi: https://doi.org/10.1016/j.cie.2021.10740
- Wu, X., Liao, H., Benjamin, L., Zavadskas, E. K. (2023). A Multiple Criteria Decision-Making Method with Heterogeneous Linguistic Expressions. IEEE Transactions on Engineering Management, 70(5), 1857-1870. Doi: https://doi.org/10.1109/TEM.2021.3072590
- Smarandache, F. (1998). Neutrosophy: neutrosophic probability, set, and logic: analytic synthesis and synthetic analysis, (October).
- Wang, H., Y. Zhang, and R. Sunderraman. (2010). Single-Valued Neutrosophic Sets, Multispace and Multistructure, Neutrosophic Transdisciplinarity, 100 Collected Papers of Sciences, Vol. IV, 410-419. North-European Scientific Publishers Hanko, Finland 2010. ISBN: 978-952-67349-2-7
- Aiwu, Z., Jianguo, Du., and Hongjun, G. (2015). Interval Valued Neutrosophic Sets and Multi- attribute Decision-making Based on Generalized Weighted Aggregation Operator. Journal of Intelligent and Fuzzy Systems, 29(6), 2697-2706. doi: 10.13195/j.kzyjc.2014.0467. Neutrosophic Sets and Systems, Vol. 63, 2023 149 __________________________________________________________________________________________________ Muhammad Saqlain, Poom Kumam, Wiyada Kumam, Neutrosophic Linguistic valued Hypersoft Set with Application: Medical Diagnosis and Treatment
- Wang, H., Smarandache, F., Zhang, Y., and Sunderraman, R. (2005). Interval Neutrosophic Sets and Logic: Theory and Applications in Computing. ArXiv. /abs/cs/0505014.
- Zhang, X. and Xu, Z. (2014). Extension of TOPSIS to Multiple Criteria Decision Making with Pythagorean Fuzzy Sets. International Journal of Intelligent Systems, 29, 1061-1078. https://doi.org/10.1002/int.21676
- Amalini. L. N., Kamal. M., Abdullah. L. and Saqlain. M. (2020) Multi-Valued Interval Neutrosophic Linguistic Soft Set Theory and Its Application in Knowledge Management, CAAI Transactions on Intelligence Technology, 5, 200-208. https://doi.org/10.1049/trit.2020.0036
- Deli, I., Ali, M., and Smarandache, F. (2015). Bipolar neutrosophic sets and their application based on multicriteria decision-making problems, 2015 International Conference on Advanced Mechatronic Systems (ICAMechS), Beijing, China, 249-254. doi: 10.1109/ICAMechS.2015.7287068.
- Adriyendi. (2015). Multi-attribute decision-making using simple additive weighting and weighted product in food choice. International Journal of Information Engineering and Electronic Business, 6, 8-14. Doi: 10.5815/ijieeb.2015.06.0
- Delgado, M., Verdegay, J.L., and Vila, M.A. (1992). Linguistic decisionˆamaking models. International Journal of Intelligent Systems, 7, 479-492. DOI:10.1002/int.4550070507
- Afshari, A. R., and Mojahed, M. (2010). Simple additive weighting approach to personnel selection problem. International Journal of Innovation, Management and Technology, 1(5), 511- 515.
- Adriyendi. (2015). Multi-attribute decision-making using simple additive weighting and weighted product in food choice. International Journal of Information Engineering and Electronic Business, 6, 8-14. DOI: 10.5815/ijieeb.2015.06.0
- Abdullah, L., and Adawiyah, C.W. (2014). Simple Additive Weighting Methods of Multi-Criteria Decision Making and Applications: A Decade Review. International Journal of Information Processing and Management, 5, 39-49.
- Abdel-Baset, M. Chang, V., and Gamal, A. (2019). Evaluation of the green supply chain management practices: A novel neutrosophic approach. Computers in Industry, 108, 210-220. https://doi.org/10.1016/j.compind.2019.02.013
- Abdel-Basset, M., Saleh, M., Gamal, A., and Smarandache, F. (2019). An approach of TOPSIS technique for developing supplier selection with group decision making under type-2 neutrosophic number. Applied Soft Computing, 77, 438-452. https://doi.org/10.1016/j.asoc.2019.01.035
- Abdel-Basset, M., Manogaran, G., Gamal, A., and Smarandache, F. (2019). A group decision- making framework based on neutrosophic TOPSIS approach for smart medical device selection. Journal of Medical Systems, 43(2), 38. DOI: 10.1007/s10916-019-1156-1
- Abdel-Basset, M., Mohamed, M., Elhoseny, M., Son, L. H., Chiclana, F., and Zaied, A. E. H. (2019). Cosine similarity measures of bipolar neutrosophic set for diagnosis of bipolar disorder diseases. Artificial intelligence in medicine, 101, 101735. https://doi.org/10.1016/j.artmed.2019.101735
- Neutrosophic Sets and Systems, Vol. 63, 2023 150 __________________________________________________________________________________________________ Muhammad Saqlain, Poom Kumam, Wiyada Kumam, Neutrosophic Linguistic valued Hypersoft Set with Application: Medical Diagnosis and Treatment
- Abdel-Basset, M., A. Gamal, G. Manogaran, L. H. Son, and H. V. Long. (2020). A novel group decision making model based on neutrosophic sets for heart disease diagnosis, Multimedia Tools and Applications, 79(15-16), 9977-10002. doi: 10.1007/s11042-019-07742-7.
- Molodtsov, D. (1999). Soft set theory -First results, Computers and mathematics with applications, 37(4-5), 19-31. doi: 10.1016/30898-1221(99)00056-5
- Riaz, M. Smarandache F., Firdous A., Fakhar, A. (2019). On Soft Rough Topology with Multi- Attribute Group Decision Making, Mathematics, 7(1), 1-18.
- Riaz, M., Davvaz, B., Firdous A., Fakhar, A. (2019). Novel Concepts of Soft Rough Set Topology with Applications, Journal of Intelligent and Fuzzy Systems, 36(4), 3579-3590. DOI: 10.3233/JIFS- 181648.
- Maji, K P. (2013). Neutrosophic soft set. Annals of Fuzzy Mathematics and Informatics, 5(1), 157- 168.
- Deli, I. (2017). Interval-valued neutrosophic soft sets and its decision-making. International Journal of Machine Learning and Cybernetics. 8, 665-676. https://doi.org/10.1007/s13042-015- 0461-3.
- Alkhazaleh, S. (2016). n-valued refined neutrosophic soft set theory, 2016 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), Vancouver, BC, Canada, 2016, pp. 2475-2480. doi: 10.1109/FUZZIEEE.2016.7738004.
- Alkhazaleh, S. and Hazaymeh,A. (2018). n-Valued Refined Neutrosophic Soft Sets and their Applications in Decision-Making Problems and Medical Diagnosis. Journal of Artificial Intelligence and Soft Computing Research, 8(1), 79-86. https://doi.org/10.1515/jaiscr-2018-0005
- Broumi, S., and Smarandache, F. (2012). Several Similarity Measures of Neutrosophic Sets. Neutrosophic Sets and Systems, 1, 54-62.
- Saeed, M., Saqlain, M., Mehmood, A., K.A., N., and Yaqoob, S. (2020). Multi-Polar Neutrosophic Soft Sets with Application in Medical Diagnosis and Decision-Making. Neutrosophic Sets and Systems, 33, 183-207. doi: 10.5281/ zenodo. 3782895
- Saeed M., Saqlain M. and Riaz M. (2019). Application of Generalized Fuzzy TOPSIS in Decision Making for Neutrosophic Soft set to Predict the Champion of FIFA 2018: A Mathematical Analysis, Punjab University Journal of Mathematics, 51(8), 111-126.
- Smarandache F. (2018). Extension of Soft Set to Hypersoft Set, and then to Plithogenic Hypersoft Set, Neutrosophic Sets and Systems, 22, 168-170.
- Saqlain M., S. Moin, M. N. Jafar, M. Saeed, and F. Smarandache. (2020). Aggregate Operators of Neutrosophic Hypersoft Set, Neutrosophic Sets and Systems, 32,294-306. doi: 10.5281/zenodo. 3723155.
- Saqlain M, Sana M, Jafar N, Saeed. M, Said. B, (2020). Single and Multi-valued Neutrosophic Hypersoft set and Tangent Similarity Measure of Single valued Neutrosophic Hypersoft Sets, Neutrosophic Sets and Systems (NSS), 32, 317-329. doi: 10.5281 zenodo. 3723165. Neutrosophic Sets and Systems, Vol. 63, 2023 151 __________________________________________________________________________________________________ Muhammad Saqlain, Poom Kumam, Wiyada Kumam, Neutrosophic Linguistic valued Hypersoft Set with Application: Medical Diagnosis and Treatment
- Saqlain M., and X. L. Xin. (2020). Interval Valued, m-Polar and m-Polar Interval Valued Neutrosophic Hypersoft Sets," Neutrosophic Sets and Systems,36,389-399. doi: 10.5281/ zenodo. 4065475.
- Saqlain M., Saeed, M., Zulqarnain M R, Sana M. (2021). Neutrosophic Hypersoft Matrix Theory: Its Definition, Operators, and Application in Decision-Making of Personnel Selection Problem, Neutrosophic Operational Research, Springer, 10.1007/978-3-03057197-9.
- Saqlain M., M. Riaz, M. A. Saleem, and M. S. Yang. (2021). Distance and Similarity Measures for Neutrosophic HyperSoft Set (NHSS) with Construction of NHSSTOPSIS and Applications, IEEE Access, 9, 30803-30816. 2021. doi: 10.1109/ACCESS. 2021.3059712.
- Jafar N. M., Saeed, M., Saqlain, M., and Yang, M. S. (2021). Trigonometric Similarity Measures for Neutrosophic Hypersoft Sets with Application to Renewable Energy Source Selection, IEEE Access,9,129178 129187. doi: 10.1109/ ACCESS. 2021.3112721.
- Ihsan, M., Saeed, M., & Rahman, A. U. (2023). An intelligent fuzzy parameterized MADM- approach to optimal selection of electronic appliances based on neutrosophic hypersoft expert set. Neutrosophic Sets and Systems 53, 459-481. https://doi.org/10.5281/zenodo.7536071
- Rahman, A. U., Saeed, M., Mohammed, M. A., Al-Waisy, A. S., Kadry, S., & Kim, J. (2022). An innovative fuzzy parameterized MADM approach to site selection for dam construction based on sv-complex neutrosophic hypersoft set. AIMS Mathematics, 8(2), 4907-4929. https://doi.org/10.3934/math.2023245
- Saeed, M., Ahsan, M., Ur Rahman, A., Saeed, M. H., & Mehmood, (2021). A. An application of neutrosophic hypersoft mapping to diagnose brain tumor and propose appropriate treatment. Journal of Intelligent & Fuzzy Systems, 41(1), 1677-1699. DOI: http://doi.org/10.3233/JIFS- 210482
- Saqlain, M., Garg, H., Kumam, P., Kumam, W. (2023). Uncertainty and decision-making with multi-polar interval-valued neutrosophic hypersoft set: A distance, similarity measure, and machine learning approach, Alexandria Engineering Journal, 84, 323-332. https://doi.org/10.1016/j.aej.2023.11.001
- Saqlain, M., Kumam, P., Kumam, W. and Phiangsungnoen, S. (2023). Proportional Distribution Based Pythagorean Fuzzy Fairly Aggregation Operators with Multi-Criteria Decision-Making, IEEE Access, 11, 72209-72226. https://doi.org/10.1109/ACCESS.2023.3292273
- Hicham, N., Nassera, H., & Karim, S. (2023). Strategic Framework for Leveraging Artificial Intelligence in Future Marketing Decision-Making. Journal of Intelligent and Management Decision, 2(3), 139-150. https://doi.org/10.56578/jimd020304
- Jana, C. & Pal, M. (2023). Interval-Valued Picture Fuzzy Uncertain Linguistic Dombi Operators and Their Application in Industrial Fund Selection. Journal of Industrial Intelligence, 1(2), 110- 124. https://doi.org/10.56578/jii010204
- Saqlain, M. (2023). Sustainable Hydrogen Production: A Decision-Making Approach Using VIKOR and Intuitionistic Hypersoft Sets. Journal of Intelligent Management Decision, 2(3), 130- 138. https://doi.org/10.56578/jimd020303
- Neutrosophic Sets and Systems, Vol. 63, 2023 152 __________________________________________________________________________________________________ Muhammad Saqlain, Poom Kumam, Wiyada Kumam, Neutrosophic Linguistic valued Hypersoft Set with Application: Medical Diagnosis and Treatment
- Haq, H. B. U. & Saqlain, M. (2023). Iris Detection for Attendance Monitoring in Educational Institutes Amidst a Pandemic: A Machine Learning Approach. Journal of Industrial Intelligence, 1(3), 136-147. https://doi.org/10.56578/jii010301
- Smarandache F. (2023). New Types of Soft Sets "HyperSoft Set, IndetermSoft Set, Indeterm HyperSoft Set, and TreeSoft Set": An Improved Version. Neutrosophic Systems with Applications, 8, 35-41. https://doi.org/10.61356/j.nswa.2023.41
- Ramya G, & Francina Shalini A. (2023). Trigonometric Similarity Measures of Pythagorean Neutrosophic Hypersoft Sets. Neutrosophic Systems with Applications, 9, 91-100. https://doi.org/10.61356/j.nswa.2023.53
- Haque, T. S., Alam, S., & Chakraborty, A. (2022). Selection of most effective COVID-19 virus protector using a novel MCGDM technique under linguistic generalized spherical fuzzy environment. Computational and Applied Mathematics, 41(2), 84.
- Tešić, D., Božanić, D., Radovanović, M., & Petrovski, A. (2023). Optimising Assault Boat Selection for Military Operations: An Application of the DIBR II-BM-CoCoSo MCDM Model. Journal of Intelligent and Management Decision, 2(4), 160-171. https://doi.org/10.56578/jimd020401
- Stević, Ž., Mujaković, N., Goli, A., & Moslem, S. (2023). Selection of Logistics Distribution Channels for Final Product Delivery: FUCOM-MARCOS Model, Journal of Intelligent and Management Decision, 2(4), 172-178. https://doi.org/10.56578/jimd020402
- N. A. Nabeeh; M. Abouhawwash, An Integrated Neutrosophic Regional Management Ranking Method for Agricultural Water Management. Neutrosophic Systems with Applications, 1 (2023), 22-28. (Doi: https://doi.org/10.5281/zenodo.8171194)
- A. Sharma; S. Murtaza; V. Kumar, Some remarks on ∆ m (I λ )-summability on neutrosophic normed spaces, International Journal of Neutrosophic Science (IJNS), 19 (2022), 68-81.
- A. Sharma; V. Kumar, Some remarks on generalized summability using difference operators on neutrosophic normed spaces, J. of Ramanujan Society of Mathematics and Mathematical Sciences, 9(2) (2022), 153-164.
- A. Sharma; V. Kumar; I. R. Ganaie. Some remarks on I(S θ )-summability via neutrosophic norm. Filomat. 37(20) (2023), 6699-6707.
- A. R. Freedman, J. J. Sember and M. Raphael, Some Cesaro type summability spaces, Proc. London Math. Soc. 37 (1978) 508-520.
- B. Schweizer; A.Sklar, Statistical metric spaces, Pacific J. Math. 10(1), (1960) 313-334.
- B. Hazarika; V. Kumar, On asymptotically double lacunary statistical equivalent sequences in ideal context, Journal of Inequalities and Applications, 2013(1), (2013). 1-15.
- F. Smarandache, Neutrosophic set, a generalization of the Intuitionistic fuzzy sets, International Journal of Pure and Applied Mathematics, 24 (2005), 287-297.
- H. Fast, Sur la convergence statistique. In Colloquium mathematische, 2(3-4), (1951), 241-244.
- H. S ¸engül Kandemir; M. Et; N. D. Aral, Strongly λ-convergence of order α in Neutrosophic Normed Spaces, Dera Natung Government College ResearchJournal, 7, 1-9, 2022.
- I. J. Maddox, Statistical convergence in a locally convex space. In Mathematical Proceedings of the Cam- bridge Philosophical Society, 104(1), (1988), 141-145.
- Sumaira Aslam, Archana Sharma and Vijay Kumar, On S θ -summability in neutrosophic-2-normed spaces
- I. J. Schoenberg, The integrability of certain functions and related summability methods. The American mathematical monthly. 66(5), (1959), 361-775.
- J. Connor, The statistical and strong p-Cesaro convergence of sequences. Analysis, 8(1-2), (1988), 47-64.
- J. A. Fridy. On statistical convergence. Analysis, 5(4), (1985) 301-314.
- J. H. Park, Intuitionistic fuzzy metric spaces, Chaos, Solitons & Fractals, 22 (2004), 1039-1046.
- J. A. Fridy; C. Orhan, Lacunary statistical convergence, Pacific Journal of Mathematics, 160(1) (1993), 43-51.
- K. T. Atanassov, Intuitionistic fuzzy sets. Fuzzy Sets and Systems, 20 (1986), 87-96.
- K. Kumar; V. Kumar, On the I and I * -convergence of sequences in fuzzy normed spaces. Advances in Fuzzy Sets, 3, (2008), 341-365.
- L. A. Zadeh, Fuzzy sets. Information and control, 8(3) (1965), 338-353.
- M. Kirişçi; N. S ¸imşek, Neutrosophic normed spaces and statistical convergence. The Journal of Analysis, 28 (2020), 1059-1073.
- M. Mursaleen; O. H. Edely, Statistical convergence of double sequences, J. Math. Anal. Appl, 288 (2003), 223-231.
- M. Mursaleen; S. A. Mohiuddine, On lacunary statistical convergence with respect to the intuitionistic fuzzy normed space, Journal of Computational and Applied Mathematics, 233(2) (2009), 142-149.
- M. Mohamed; A. Gamal, Toward Sustainable Emerging Economics based on Industry 5.0: Leveraging Neutrosophic Theory in Appraisal Decision Framework, Neutrosophic Systems with Applications, 1 (2023), 14-21. (Doi: https://doi.org/10.5281/zenodo.8171178)
- N. D. Aral; H. Sengül Kandemir, M. Et, Strongly lacunary convergence of order β of difference sequences of Fractional Order in Neutrosophic Normed Spaces, Filomat, 37(19) (2023), 6443-6451.
- N. D. Aral; H. S ¸engül Kandemir, I-lacunary statistical convergence of order β of difference sequences of fractional order. Facta Univ. Ser. Math. Inform. 36(1) (2021), 43-55.
- P. Kumar; S. S. Bhatia; V. Kumar, On lacunary statistical limit and cluster points of sequences of fuzzy numbers, Iranian Journal of Fuzzy Systems, 10(6) (2013), 53-62.
- R. Saadati; J. H. Park, On the Intuitionistic fuzzy topological spaces, Chaos, Solitons & Fractals, 27 (2006), 331-344.
- S. Gahler, Lineare 2-normierte Räume. Mathematische Nachrichten, 28, (1964), 1-45.
- S. Karakus; K. Demirci; O. Duman. Statistical convergence on intuitionistic fuzzy normed spaces. Chaos, Solitons & Fractals, 35, (2008), 763-769.
- S. Murtaza; A. Sharma; V. Kumar, Neutrosophic 2-normed space and generalized summability. Neutro- sophic sets and system. 55 (2023), 415-426.
- T. Šalát, On statistically convergent sequences of real numbers. Mathematica slovaca. 30(2), (1980), 139- 150.
- U. Praveena; M. Jeyaraman, On Generalized Cesaro Summability Method In Neutrosophic Normed Spaces Using Two-Sided Taubarian Conditions. Journal of algebraic statistics. 13(3), (2022), 1313-1323.
- V. Kumar; M. Mursaleen, On (λ, µ)-statistical convergence of double sequences on intuitionistic fuzzy normed spaces, Filomat 25(2) (2011), 109-120.
- V. A. Khan; M. D. Khan; M. Ahmad, Some new type of lacunary statistically convergent sequences in neutrosophic normed space. Neutrosophic Sets and Systems, 42, (2021).
- V. Kumar; M. Mursaleen, On ideal analogue of asymptotically lacunary statistical equivalence of sequences, Acta Universitatis Apulensis, 36 (2013), 109-119.
- Sumaira Aslam, Archana Sharma and Vijay Kumar, On S θ -summability in neutrosophic-2-normed spaces
- Muthuraj, R.; Balamurugan, S. Multi-Fuzzy Group and its Level Subgroups.Gen. Math. Notes, (2013), (17), 1, (74-81).
- Rasuli,R. Norms over intuitionistic fuzzy subrings and ideals of a ring. Notes on intuitionistic fuzzy sets, (2016), (22), 5, (72-83).
- Ulucay,V.; and Memet sahin, Neutrosophic Multi Groups and Applications. New challenges in Neutrosophic theory and Applications, (2019) 7, (50).
- Zadeh.L. A,;Fuzzy Sets. Inform. and Control, (1965) (8), (338-353).
- Smarandache, F.; Neutrosophy, A new branch of Philosophy logic in multiple-valued logic. An International Journal, (2002) (8), 3, (297-384).
- Hemabala,K.; Srinivasakumar,B., Anti Neutrosophic Multi fuzzy ideals of gamma near Ring. Neutrosophic sets and systems (2022), (48), (66-85).
- Rasul Rasuli., Norms on intuitionistic fuzzy Multigroup. Yogoslav journal of operations research, (2021)31(3), (339-362).
- Sebastian.S, Ramakrishnan.T,.Multi fuzzy sets.Int.Math.Forum, (2010)5,(50),(2471-2476).
- Shinoj, T.K., john,S.S. Intutionistic fuzzy multisets and its application in Medical diagnosis. World Acad.Sci.Eng.Technol. (2012), (6), (1418-1421).
- Rosenfield, A., Fuzzy Groups. Journal of mathematics analysis and applications, (1971), (35), (512-517)
- Atanassov, K.T, Intuitionistic fuzzy sets. Fuzzy sets and systems, (1986), (20), (87-96).
- Abu Osman, M.T., On some products of fuzzy subgroups, Fuzzy sets and systems, (1987), (24),1,(79-86).
- Deli, I.; Broumi,S.Samarandache,F., On Neutrosophic multisets and its application in medical diagnosis. J.New Theory, (2015), (6),(88-98).
- Wang,H.; samarandache,F., YZhang,Q.,Sunderraman,R., Single valued Neutrosophic Sets. .Multispace Multistruct., (2010),4,(410-413).
- Sharma, P.K.,Homomorphism of Intuitionistic fuzzy groups. Int. Math. Forum, (2011), (6),64 (31693178).
- Sharma, P.K. On the direct product of Intuitionistic fuzzy subgroups. Int. Math. Forum, (2012), (7)11, (523530).
- B. Anitha and P. Tharini, Embedding Norms into Neutrosophic Multi Fuzzy Subrings
- Bukley,J.J.& Eslami,E. An introduction to fuzzy logic and fuzzy sets, Springer-verlag, Berlin Heidelberg GmbH, (2002)
- Rasul Rasuli, Direct product of fuzzy multigroups under T-norms, open J. Appl.Math (2020),3(1), (75-85).
- Rasul Rasuli, Intuitionistic fuzzy subgroups with respect to norms (T, S), Eng.Appl.Sci.Lett. (2020) 3(2), (40-53).
- ahin, M.; Deli, I.; Ulucay, V. Extension principle based on neutrosophic multi-sets and algebraic operations. J. Math. Ext., (2018), 12, (6990).
- Ye, S.; Ye, J., Dice Similarity Measure between Single Valued Neutrosophic Multisets and Its Application in Medical Diagnosis. Neutrosophic Sets Syst., (2014) 6, (4954).
- Ye, S.; Fu, J.; Ye, J. Medical Diagnosis Using Distance-Based Similarity Measures of Single Valued Neu- trosophic Multisets. Neutrosophic Sets Syst. (2015) ,7, (4752).
- B. Anitha and P. Tharini, Embedding Norms into Neutrosophic Multi Fuzzy Subrings Neutrosophic Sets and Systems, Vol. 63, 2024
- Atanassov, K.T., Intuitionistic fuzzy sets, Fuzzy Sets and Systems, 20(1), (1986), 87-96.
- Antal R., Chawla M., Kumar V., Statistical Λ-Convergence in Intuitionistic fuzzy normed spaces, Buletinul Academiei de Stiinte a Moldovei Mathematica, 3(91), (2019), 22-33.
- Connor, J., The statistical and strong p-Cesaro convergence of sequences. Analysis,8(1-2), (1988), 47-64.
- Fast, H., Sur la convergence statistique. In Colloquium mathematicae, 2(3-4), (1951), 241-244.
- Felbin, C., Finite dimensional fuzzy normed linear spaces. Fuzzy Sets System, 48, (1992), 239-248.
- Fridy, J. A., On statistical convergence. Analysis, 5(4), (1985) 301-314.
- Gahler, S., 2-metrische Räume und ihre topologeische Struktur, Math. Nachr., 26 (1963), 115-148.
- Hazarika, B.; Savaş, E., λ-statistical convergence in n-normed spaces. Analele ştiint ¸ifice ale Universitȃt ¸ii" Ovidius" Constant ¸a. Seria Matematicȃ, 21(2), (2013), 141-153.
- Hazarika, B., Kumar, V., Lafuerza-Guillén, B., Generalized ideal convergence in intuitionistic fuzzy normed linear spaces. Filomat, 27, (2013), 811-820.
- Harnpornchai, N., Wonggattaleekam, W., An Application of Neutrosophic Set to Relative Importance As- signment in AHP. Mathematics, 9(20), (2021), 2636.
- Karakus, S., Demirci, K., Duman, O., Statistical convergence on intuitionistic fuzzy normed spaces. Chaos, Solitons & Fractals, 35, (2008), 763-769.
- Khan, V. A., Khan, M. D., Ahmad, M., Some new type of lacunary statistically convergent sequences in neutrosophic normed space. Neutrosophic Sets and Systems, 42(1), (2021), 15.
- Kirişci, M., S ¸imşek, N., Neutrosophic normed spaces and statistical convergence. The Journal of Analysis, 28, (2020), 1059-1073.
- Kumar, K., Kumar, V., On the I and I * -convergence of sequences in fuzzy normed spaces. Advances in Fuzzy Sets, 3, (2008), 341-365.
- Kumar. V., Mursaleen, M., On (λ, µ)-Statistical convergence of double sequences on intuitionistic fuzzy normed spaces, Filomat, 25(2), (2011), 109-120.
- Kumar, V., On Λ-statistical limit points in probabilistic normed spaces, Atti della Fondazione Giorgio Ronchi, 65(2),(2010), 1-10.
- Kumar, P., Kumar, V., Batia, S. S., On Λ-statistical limit inferior and limit superior of order β for sequences of fuzzy numbers, Gen. 25(2), (2014), 6-18.
- Koundal, D., Gupta, S., Singh, S., Applications of neutrosophic sets in medical image denoising and seg- mentation. Infinite Study. (2016).
- Leindler, L., Über die de la Vallée-Pousinsche Summierbarkeit allgen-meiner Othogonalreihen, Acta Math. Acad. Sci. Hungar, 16, (1965), 375-387.
- Maddox, I. J., Statistical convergence in a locally convex space. In Mathematical Proceedings of the Cam- bridge Philosophical Society, 104(1), (1988), 141-145.
- Mursaleen, M., λ-statistical convergence. Math Slovaca., 50(1), (2000), 111-115.
- Mursaleen, M., Danish-Lohani, Q.M. Intuitionistic fuzzy 2-normed space and some related concepts.Chaos, Solitons & Fractals, 42, (2009), 224-234.
- Majumdar, P., Neutrosophic sets and its applications to decision making. In Computational intelligence for big data analysis (2015), (pp. 97-115). Springer, Cham.
- Murtaza, S., Sharma, A., and Kumar, V., Neutrosophic 2-normed space and generalized summability. Neutrosophic sets and system. 55(1), (2023), 414-426
- Sumaira Aslam,Vijay Kumar and Archana Sharma, On λ-statistical and V λ -statistical summability in neutrosophic-2-normed spaces
- Meenakshi, C., Kumar, V., Saroa, M. S., Some remarks on statistical summability of order α defined by generalized De la Vallée Poussin mean, Boletim da Sociedade Paranaense de Mathematica, 33(1),(2015), 147-156.
- Meenakshi, C., Saroa, M. S., Kumar, V., On Λ-statistical convergence of order α in random 2-normed space, Miskolc Mathematical Notes, 16(2), (2015), 1003-1015.
- Park, J. H., Intuitionistic fuzzy metric spaces. Chaos, Solitons & Fractals, 22, (2004), 1039-46.
- Praveena, U., Jeyaraman, M., On Generalized Cesaro Summability Method In Neutrosophic Normed Spaces Using Two-Sided Taubarian Conditions. Journal of algebraic statistics. 13(3), (2022), 1313-1323.
- Parimala, M., Smarandache, F., Jafari, S., Udhayakumar, R., On Neutrosophic αψ-closed sets. information, 9(5),(2018), 103.
- Parimala, M., Karthik, M., Jafari, S., Smarandache, F., Udhayakumar, R., Decision-Making via Neutro- sophic support soft Topological spaces, Symmetry, 10(6),(2018),217.
- Parimala, M., Karthik. M., Jafari, S., Smarandache, F., Udhayakumar, R., Neutrosophic Nano ideal topo- logical structure, Neutrosophic sets and systems 24, (2019),pp 70-76.
- Reena, A., Meenakshi, C., Vijay, K., Some Remarks On Rough Statistical Λ-convergence of order α.Ural Mathematical Journal, 7(1), (2021),16-25.
- Schoenberg, I. J., The integrability of certain functions and related summability methods. The American mathematical monthly. 66(5), (1959), 361-775.
- Saadati, R., Park, J. H., On the Intuitionistic fuzzy topological spaces. Chaos, Solitons & Fractals, 27, (2006) 331-44.
- Smarandache, F., Neutrosophic set, a generalisation of intuitionistic fuzzy sets, Int J Pure Appl Math 24 (2005), 287-297.
- Šalát, T., On statistically convergent sequences of real numbers. Mathematica slovaca. 30(2), (1980), 139- 150.
- Sharma, A., Kumar, V., Some remarks on generalized summability using difference operators on neutro- sophic normed spaces, J. of Ramanujan Society of Mathematics and Mathematical Sciences. 9(2) (2022) 53-164.
- Sharma A. and Kumar V., On generalized asymptotically equivalent double sequences through (V,λ,µ)- summability, series Mathematics,(2013),3.
- Sharma A., Kumar, V., Ganaie, I. R., Some remarks on I(S θ )-summability via neutrosophic norm, Filomat., 37(20), (2023), 6699-6707.
- Schweizer, B., Sklar, A., Statistical metric spaces, Pacific J. Math. 10(1), (1960) 313-334.
- Zadeh, L. A., Fuzzy sets. Information Control, 8, (1965) 338-53.
- Sumaira Aslam,Vijay Kumar and Archana Sharma, On λ-statistical and V λ -statistical summability in neutrosophic-2-normed spaces
- References [1] Zadeh L.A. (1965) Fuzzy sets. Information and control, 8: 338-353.
- Atanassov, K.T. (1986) Intuitionistic fuzzy sets. Fuzzy Sets and Systems, 20(1), 87-96. https://doi.org/10.1016/S0165-0114(86)80034-3.
- Smarandache, F., (1998) Neutrosophy, neutrosophic probability, set and logic. Amer. Res. Press, Rehoboth, USA. p. 105. http://fs.gallup.unm.edu/eBook-neutrosophics6.pdf (sixth version).
- Manas Karak, Pramodh Bharati , Animesh Mahata, Subrata paul , Santosh Biswas , Supriya Mukherjee , Said Broumi , Mahendra Rong and Banamali Roy, Ranking of Neutrosophic number based on values and ambiguities and its application to linear programming problem
- W.J.Qiang,Z.Zhong (2009) Aggregation operators on intuitionistic trapezoidal fuzzy number and its ap- plication to multi-criteria decision making problems,Journel of System Engineering and Electronics, 20, 2, 321-326.
- Li, DF., Nan, JX., and Zhang, MJ. (2010) A ranking method of triangular intuitionistic fuzzy numbers and application to decision making, Int J Comput Intell Syst, 3(5):522-530.
- Deng Feng Li,Jian Xia Nan,Mao Jun Zhang (2010) A ranking method of Triangular Intuitionis- tic Fuzzy Numbers and Application to Decision Making, International Journal of Computational Systems,Vol.3.No.5,522-530.
- Wang, H., Zhang, Y., Sunderraman, R., and Smarandache, F. (2011) Single valued neutrosophic sets. Fuzzy Sets, Rough Sets andMultivalued Operations and Applications, 3(1): 33-39.
- De P.K., Das D. (2012) Ranking of trapezoidal intuitionistic fuzzy numbers,National Institute of Technology Silchar, India, DOI: 10.1109/ISDA.2012.6416534.
- Wan, SP. (2013) Power average operators of trapezoidal intuitionistic fuzzy numbers and application to multi-attribute group decision making, Appl Math Modell, 37:4112-4126.
- Ye, J. (2014) A multicriteria decision-making method using aggregation operators for simplified neutro- sophic sets. J. Intell. Fuzzy Syst., 26, 2459 -2466. [CrossRef].
- Subas, Y. (2015) Neutrosophic numbers and their application to Multi-attribute decision making problems (In Turkish) (Masters Thesis, Kilis 7 Aralık University, Graduate School of Natural and Applied Science).
- Deli, I., Subas, Y. (2016) A ranking method of single valued neutrosophic numbers and its appli- cation to multi-attribute decision making problems, Int. J. Mach. Learn.and Cyber, 8(4):1309-1322, DOI:10.100713042-016-0505-3.
- Peng, J.-J.; Wang, J.-Q.; Wang, J.; Zhang, H.-Y.; Chen, X.-H. (2016) Simplified neutrosophic sets and their applications in multi-criteria group decision-making problems. Int. J. Syst. Sci., 47, 1 -17. [CrossRef].
- Keikha A., Nehi H.M (2016)Operations and Ranking methods for intuitionistic fuzzy numbers, a review and new methods,I.J.Intelligent and Applications, 1,35-48.
- Loganathan c., Lalitha M. (2017) 'A new approach on solving intuitionistic fuzzy nonlinear programming problem', Int. J. Sc. Res. in Comp. and Engg., 5(5),pp. 1-9.
- Mehlawat, M.K. and Grover, N. (2018) Intuitionistic fuzzy multi-criteria group decision making with an application to critical path selection. Annals of Opera-tions Research, 269(1-2), 505-520. https://doi.org/10.1007/s10479-017-2477-4.
- Edalatpanah, S.A. (2019) A nonlinear approach for neutrosophic linear programming, Journal of Applied Research on Industrial Engineering, 6(4): 367-373.
- Sumathi, IR., Sweety, CAC. (2019) New approach on differential equation via trapezoidal neutrosophic number, Complex Intell Syst, 5(4):417-424.
- Mohan S., Kannusamy A.P. , Samiappan V. (2020) A new Approach for Ranking of Intuitionistic Fuzzy Numbers, J.Fuzzy.Ext.Appl.Vol.1, 15-26.
- Alzahrani F.A.;Ghorui N.,Gazi K.H.,Giri B.C. ,Ghosg A.,Mondal S.P (2023) Optimal site selection for Women university using Neutrosophic multi-crioteria Decision making Approach.Buildings,13,152.
- Karak Manas, Mahata. A, Rong. M, Mukherjee. S, Mondal S.P, Broumi. S, Roy. B (2023), A solution tech- nique of Transportation Problem in Neutrosophic Environment, Neutrosophic System with applications, Vol.3.
- A.N. Revathi, S. Mohanaselvi, and Broumi Said (2023), An Efficient Neutrosophic Technique for Uncertain Multi Objective Transportation Problem, Neutrosophic Sets and Systems, vol.53.
- Sujatha Ramalingam1, Kuppuswami Govindan and Said Broumi (2021), Analysis of Covid-19 via Fuzzy Cognitive Maps and Neutrosophic Cognitive Maps, Neutrosophic Sets and Systems, vol.42.
- Manas Karak, Pramodh Bharati , Animesh Mahata, Subrata paul , Santosh Biswas , Supriya Mukherjee , Said Broumi , Mahendra Rong and Banamali Roy, Ranking of Neutrosophic number based on values and ambiguities and its application to linear programming problem
- Broumi Said , Malayalan Lathamaheswari, Prem Kumar Singh , Asma Ait Ouallane1,Abdellah Bakhouyi , Assia Bakali, Mohamed Talea, Alok Dhital and Nagarajan Deivanayagampillai (2022), An Intelligent Traffic Control System Using Neutrosophic Sets, Rough sets, Graph Theory, Fuzzy sets and its Extended Approach: A Literature Review, Neutrosophic Sets and Systems, vol.50.
- Praba B, Balambal Suryanarayanan, D.Nagarajan, Broumi Said (2023), Analysis of Teaching-Learning Efficiency Using Attribute Based Double Bounded Rough Neutrosophic Set Driven Random Forests, Neu- trosophic Sets and Systems, vol.55.
- Surapati Pramanik, Suman Das, Rakhal Das, and Binod Chandra Tripathy (2023), Neutrosophic BWM- TOPSIS Strategy under SVNS Environment, Neutrosophic Sets and Systems, Vol. 56.
- M. Mullai, S. Broumi , R. Jeyabalan, R. Meenakshi (2021), Split Domination in Neutrosophic Graphs, Neutrosophic Sets and Systems, Vol. 47.
- S. Satham Hussain, Saeid Jafari, Said Broumi and N. Durga S. Satham Hussain, Saeid Jafari, Said Broumi and N. Durga (2020), Operations on Neutrosophic Vague Graphs, Neutrosophic Sets and Systems, Vol. 35.
- Ashish Acharya, Animesh Mahata, Supriya Mukherjee, Manajat Ali Biswas, Krishna Pada Das, Sankar Prasad Mondal, Banamali Roy (2023), A Neutrosophic differential equation approach for modelling glucose distribution in the bloodstream using neutrosophic sets, Decision Analytics Journal Vol.8 .
- Maissam Jdid, Huda E Khalid, Mysterious Neutrosophic Linear Models, International Journal of Neutro- sophic Science, Vol.81, No. 2, 2022.
- Maissam Jdid, The Use of Neutrosophic linear Programming Method in the Field of Education, Handbook of Research on the Applications of Neutrosophic Sets Theory and Their Extensions in Education, Chapter 15, IGI-Global, 2023.
- Maissam Jdid , and Florentin Smarandache, Optimal Agricultural Land Use: An Efficient Neu- trosophic Linear Programming Method, Neutrosophic Systems with Applications, Vol. 10, 2023, https://doi.org/10.61356/j.nswa.2023.76.
- Avishek Chakraborty, Sankar Prasad Mondal, Animesh Mahata and Shariful Alam, Different linear and non-linear form of trapezoidal neutrosophic numbers, de-neutrosophication techniques and its application in time-cost optimization technique, sequencing problem, RAIRO-Oper. Res., vol-55 (2021), S97-S118, https://doi.org/10.1051/ro/2019090.
- Maissam Jdid and Florentin Smarandache, The Use of Neutrosophic Methods of Operation Re- search in the Management of Corporate Work, Neutrosophic Systems with Applications, Vol. 3, 2023, https://doi.org/10.61356/j.nswa.2023.11.
- Xuzhu Wang, Etienne E. Kerre, Reasonable properties for the ordering of fuzzy quantities (I), Fuzzy Sets and Systems, Volume 118, Issue 3, 16 March 2001, Pages 375-385.
- Abduallah Gamal , Mohamed Abdel-Basset , Ibrahim M. Hezam , Karam M. Sallam and Ibrahim A. Hameed, An Interactive Multi-Criteria Decision-Making Approach for Autonomous Vehicles and Dis- tributed Resources Based on Logistic Systems: Challenges for a Sustainable Future, Sustainability 2023, 15, 12844. https://doi.org/10.3390/su151712844.
- Manas Karak, Pramodh Bharati , Animesh Mahata, Subrata paul , Santosh Biswas , Supriya Mukherjee , Said Broumi , Mahendra Rong and Banamali Roy, Ranking of Neutrosophic number based on values and ambiguities and its application to linear programming problem Received: Oct 8, 2023. Accepted: Jan 13, 2024
- Abdel-Basset, M.; Manogaran, G.; Gamal, A.; Smarandache, F. A group decision making framework based on neutrosophic TOPSIS approach for smart medical device selection. Journal of Medical Systems (2019), 43, 38-45.
- Abdel-Basset, M; Ding, W.; Mohamed, R.; Metawa, N. An integrated plithogenic MCDM approach for financial performance evaluation of manufacturing industries. Risk Management (2020), 22(3), 192-218.
- Abdel-Basset, M; Mohamed, R.; Sallam, K.; Elhosemy, M. A novel decision-making model for sustainable supply chain finance under certainty environment. Journal of Cleaner Production (2020), 269, 122-324.
- Abdel-Basset, M; Mohamed, R.; Sallam, K.; Elhosemy, M. A novel framework to evaluate innovation value proposition for smart product-service systems. Environmental Technology and Innovation (2020), 20, 10-36.
- Abolpour, K.; Zahedi, M.M. Isomorphism between two BL-general fuzzy automata. Soft Computing (2012), 16, 729-736.
- Abolpour, K.; Zahedi, M.M. BL-general fuzzy automata and accept behavior. Journal of Applied Mathe- matics and Computing (2012), 38, 103-118.
- Abolpour, K.; Zahedi, M.M. General fuzzy automata based on complete residuated lattice-valued. Iranian Journal of Fuzzy Systems (2017), 14, 103-121.
- Adamek, J.; Trnkova, V. Automata and Algebras in Category. Kluwer (1990).
- Arbib, M.A.; Manes, E.G. Arrows, Structures, and Functors: The Categorical Imperative. Academic Press, New York (1975).
- Eilenberg, S.; Mac Lane, S. General theory of natural equivalences. Transaction of American Mathematical Society (1945), 58, 231-294.
- Freyd, P.J. Abelian Categories, Harper and Row. New York (1964).
- Gau, W.L.; Buehrer, D.J. Vague sets. IEEE Transactions on Systems, Man, and Cybernetics (1993), 23(2), 610-614.
- Anil Kumar Ram; Anupam K. Singh; Bikky Kumar. Neutrosophic Automata and Reverse Neutrosophic Automata
- Hashmi, M.R.; Riaz, M.; Smarandache, F. m-Polar neutrosophic topology with applications to multi- criteria decision-making in medical Diagnosis and clustering Analysis. International Journal of Fuzzy Sys- tems (2020), 22, 273-292.
- Ignjatović, J.; Ćiric, M.; Bogdanović, S. Determinization of fuzzy automata with membership values in complete residuated lattices. Information Sciences (2008), 178, 164-180.
- Ignjatović, J.; Ćiric, M.; Bogdanović, S.; Petković, T. Myhill-Nerode type theory for fuzzy languages and automata. Fuzzy Sets and Systems (2010), 161, 1288-1324.
- Ignjatović, J.; Ćiric, M.; Simović, V. Fuzzy relation equations and subsystems of fuzzy transition systems. Knowledge-Based Systems (2013), 38, 48-61.
- Jin, J.H.; Li, Q.G.; Li, Y.M. Algebraic properties of L-fuzzy finite automata. Information Sciences (2013), 234, 182-202.
- Jun, Y.B. Intuitionistic fuzzy finite state machines. Journal of Applied Mathematics and Computing (2005), 17, 109-120.
- Jun, Y.B. Intuitionistic fuzzy finite switchboard state machines. Journal of Applied Mathematics and Com- puting (2006), 20, 315-325.
- Jun, Y.B.; Kim, C.S.; Yang, K.O. Cubic sets. Annals of Fuzzy Mathematics and Informatics (2012), 4(1), 83-98.
- Karthikeyan, V.; Karuppaiya, R. Subsystems of interval neutrosophic automata. Advances in Mathematics: Scientific Journal (2020), 9(4), 1653-1659.
- Kavikumar, J.; Nagarajan, D.; Broumi, S.; Smarandache, F.; Lathamaheswari, M.; Ebas, N.A. Neutrosophic general finite automata. Neutrosophic Sets and Systems (2019), 27, 17-36.
- Kavikumar, J.; Nagarajan, D.; Lathamaheswari, M.; Yong, G.J.; Broumi, S. Distinguishable and inverses of neutrosophic finite automata. Neutrosophic Graph Theory and Algorithms, IGI Global Publisher (2020).
- Kavikumar, J.; Nagarajan, D,; Tiwari, S.P.; Broumi, S.; Smarandache, F. Composite neutrosophic finite automata. Neutrosophic Sets and Systems (2020), 36, 282-291.
- Kim, Y.H.; Kim, J.G.; Cho, S.J. Products of T-generalized state machines and T-generalized transformation semigroups. Fuzzy Sets and Systems (1998), 93, 87-97.
- Kharal, A. A neutrosophic multi-criteria decision making method. New Mathematics and Natural Compu- tation (2014), 10(2), 143-162.
- Kumbhojkar, H.V.; Chaudhari, S.R. On proper fuzzification of fuzzy finite state machines. International Journal of Fuzzy Mathematics (2008), 8, 1019-1027.
- Lawvere, F.W. Functorial semantics of algebraic theories. in: Proceedings of the National Academy of Sciencs of the United States of America (1963), 1-869.
- Lawvere, F.W. the category of categories as a foundation for mathematics. in: Proceedings of the Confer- ences on Categorical Algebra (1966), 1-20.
- Li, Y.; Pedrycz, W. Fuzzy finite automata and fuzzy regular expressions with membership values in lattice- ordered monoids. Fuzzy Sets and Systems (2005), 156, 68-92.
- Lee, K.M. Bipolar-valued fuzzy sets and their operations. Proceedings of International Conference on In- telligent Technologies, Bangkok,Thailand (2000), 307-312.
- Malik, D.S.; Mordeson, J.N.; Sen, M.K. Submachines of fuzzy finite state machine. The Journal of Fuzzy Mathematics (1994), 2, 781-792.
- Mahmood, T.; Khan, Q. Interval neutrosophic finite switchboard state machine. Africa Matematika (2016), 27, 1361-1376.
- Mahmood, T.; Khan, Q.; Ullah, K., and Jan, N. Single valued neutrosophic finite state machine and switchboard state machine. New Trends in Neutrosophic Theory and Applications, II, (2018), 384-402.
- Moćkor, J. A category of fuzzy automata. International Journal of General Systems (1991), 20, 73-82.
- Anil Kumar Ram; Anupam K. Singh; Bikky Kumar. Neutrosophic Automata and Reverse Neutrosophic Automata
- Moćkor, J. Fuzzy and non-deterministic automata. Soft Computing (1999), 3, 221-226.
- Moćkor, J. Semigroup homomorphisms and fuzzy automata. Soft Computing (2002), 6, 423-427.
- Mordeson, J.N.; Malik, D.S. Fuzzy Automata and Languages: Theory and Applications. Chapman and Hall/CRC. London/Boca Raton (2002).
- Nagarajan, D.; Lathamaheswari, M.; Broumi, S.; Kavikumar, J. Dombi interval valued neutrosophic graph and its role in traffic control management. Neutrosophic Sets and Systems (2019), 24, 114-133.
- Nagarajan, D.; Lathamaheswari, M.; Broumi, S.; Kavikumar, J. A new perspective on traffic control management using triangular interval type-2 fuzzy sets and interval neutrosophic sets. Operation Research Perspectives (2019), 6, 100099.
- Ozturk, T.Y.; Ozkan, A. A. Neutrosophic bitopological spaces. Neutrosophic Sets and Systems (2019), 30, 88-97.
- Pal, P.; Tiwari, S.P. ; Verma, R. On different operators in automata theory based on residuated and co-residuated lattices. New Mathematics and Natural Computation (2019), 15, 169-190 .
- Peeva, K. Fuzzy acceptors for syntactic pattern recognition. International Journal of Approximate Reasoning (1991), 5, 291-306.
- Peeva, K. Finite L-fuzzy acceptors, regular L-fuzzy grammars and syntactic pattern recognition. Interna- tional Journal of Uncertainty, Fuzziness and Knowledge-Based Systems (2004), 12, 89-104.
- Pierce, B.C. Basic Category Theory for Computer Scientists. The MIT Press. Cambridge (1991).
- Qiu, D. Automata theory based on complete residuated lattice-valued logic(I). Science in China Series : Information Sciences (2001), 44, 419-429.
- Qiu, D. Automata theory based on quantum logic: Some characterizations. Information and Computation (2004), 190, 179-195.
- Qiu, D. Automata theory based on quantum logic: Reversibilities and pushdown automata. Theoretical Computer Science (2007), 386, 38-56.
- Radwan, N.; Senousy, M. Badar; Riad, Alaa el-din mohamed. Neutrosophic logic approach for evaluating learning management systems. Neutrosophic Sets and Systems (2016), 11, 03-07.
- Riaz, M.; Hashmi, M.R. Fixed points of fuzzy neutrosophic soft mapping with decision-making. Fixed Point Theory and Applications (2018), 7, 1-10.
- Samuel, A.E.; Narmadhagnanam, R. Pi-distance of rough Neutrosophic sets for medical diagnosis. Neutro- sophic Sets and Systems (2019), 28, 51-57.
- Santos, E.S. Maximin automata. Information and Control (1968), 12, 367-377.
- Smarandache, F. A unifying field in logics: Neutrosophy, neutrosophic probability, set and logic, Rehoboth. American Research Press, 1999.
- Smarandache, F. Neutrosophic set -a generalization of the intuitionistic fuzzy set. IEEE International Conference on Granular Computing (2006), 8-42.
- Singh, Anupam K.; Tiwari, S.P. On IF-closure space vs IF-rough sets. Annals of Fuzzy Mathematics and Informatics (2016), 11, 14-26.
- Singh, Anupam K.; Pandey, S.; Tiwari, S.P. On Algebraic study of type-2 fuzzy finite state automata. Journal of Fuzzy Set Valued Analysis (2017), 2, 86-95.
- Singh, Anupam K. Fuzzy preordered set, fuzzy topology and fuzzy automaton based on generalized resid- uated lattice. Iranian Journal of Fuzzy Systems (2017), 14, 55-66.
- Singh, Anupam K. Decomposition of fuzzy automata based on lattice-ordered monoid. Global Journal of Science Frontier Research (2018), 18, 1-10.
- Singh, Anupam K. Bipolar fuzzy preorder, alexandrov bipolar fuzzy topology and bipolar fuzzy automata. New Mathematics and Natural Computation (2019), 15, 463-477.
- Anil Kumar Ram; Anupam K. Singh; Bikky Kumar. Neutrosophic Automata and Reverse Neutrosophic Automata
- Singh, Anupam K.; Tiwari, S.P. Fuzzy regular language based on residuated lattices. New Mathematics and Natural Computation (2020), 16(02), 363-373.
- Singh, Anupam K.; Gautam, V. Subsystems and fuzzy relation equations of fuzzy automata based on generalized residuated lattice. New Mathematics and Natural Computation (2021), 17, 607-621.
- Srivastava, A.K; Tiwari, S.P. A topology for fuzzy automata. in: Proc. AFSS Internat. Conf. on Fuzzy System, Lecture Notes in Artificial Intelligence, Springer, Berlin (2002), 2275, 485-490.
- Tiwari, S.P.; Sharan, S. Fuzzy automata based on lattice-ordered monoids with algebraic and topological aspects. Fuzzy Information and Engineering (2012), 4, 155-164.
- Tiwari, S.P.; Singh, Anupam K.; Sharan, S. Fuzzy automata based on lattice-ordered monoid and associated topology. Journal of Uncertain Systems (2012), 6, 51-55.
- Tiwari, S.P.; Singh, Anupam K. Fuzzy preorder, fuzzy topology and fuzzy transition system. in: Proc. ICLA 2013, Lecture Notes in Computer Science, Springer, Berlin (2013), 7750, 210-219.
- Tiwari, S.P.; Singh, Anupam K. ; Sharan, S.; Yadav, V.K. Bifuzzy core of fuzzy automata. Iranian Journal of Fuzzy Systems (2015), 12, 63-73.
- Tiwari, S.P.; Yadav, V.K.; Singh, A.K. On algebraic study of fuzzy automata. International Journal of Machine Learning and Cybernetics (2015), 6, 479-485.
- Tiwari, S.P.; Srivastava, A.K. On a decomposition of fuzzy automata. Fuzzy Sets and Systems (2005), 151, 503-511.
- Tiwari, S.P.; Yadav, V.K.; Singh, A.K. Construction of a minimal realization and monoid for a fuzzy languages: a categorical approach. Journal of Applied Mathematics and Computing (2015), 47, 401-416.
- Wang, H.; Smarandache, F.; Zhang, Y.Q.; Sunderraman, R. Interval neutrosophic sets and logic: Theory and applications in computing. Hexis, Phoenix, AZ, (2005).
- Wang, H.; Smarandache, F.; Zhang, Y.Q.; Sunderraman, R. Single valued neutrosophic sets. Multispace and Multistructure (2010), 4, 410-413.
- Wee, W.G. On generalizations of adaptive algorithm and application of the fuzzy sets concept to pattern classification. Ph. D. Thesis, Purdue University, Lafayette, IN (1967).
- Wee, W.G. A formulation of fuzzy automata and its application as a model of learning systems. IEEE transactions on systems science and cybernetics (1969), 5, 215-223.
- Ye, J. Improved cosine similarity measures of simplified neutrosophic sets for medical diagnoses. Artificial Intelligence in Medical (2015), 63(3), 171-179.
- Zadeh, L.A. Fuzzy Sets. Information and Control (1965), 8, 338-353.
- Zhang, Q.; Huang, Y. Intuitionistic fuzzy automata based on complete residuated lattice-valued logic. International Journal of Materials and Product Technology (2012), 45, 108-118.
- Anil Kumar Ram; Anupam K. Singh; Bikky Kumar. Neutrosophic Automata and Reverse Neutrosophic Automata References 1. Ahsan, J.; Saifullah, K.; Khan, F.; Fuzzy semirings, Fuzzy Sets and Systems 1993, 60, 309-320.
- Akram, M.; Dudek, W. A.; Ilyas, F.; Group decision making based on Pythagorean fuzzy TOPSIS method, International Journal of Intelligent Systems 2019, 34, 1455-1475.
- Akram, M.; Dudek, W. A.; Dar, J. M.; Pythagorean dombi fuzzy aggregation operators with application in multi-criteria decision-making, International Journal of Intelligent Systems 2019, 34, 3000-3019.
- Akram, M.; Peng, X.; Al-Kenani, A. N.; Sattar, A.; Prioritized weighted aggregation operators under complex Pythagorean fuzzy information, Journal of Intelligent and Fuzzy Systems 2020, 39(3), 4763-4783.
- Atanassov, K.; Intuitionistic fuzzy sets, Fuzzy Sets and Systems 1986, 20(1), 87-96.
- Hussian, F.; Hashism, R. M.; Khan, A.; Naeem, M.; Generalization of bisemirings, International Journal of Computer Science and Information Security 2016, 14(9), 275-289.
- Golan, S.J.; Semirings and their applications, Kluwer Academic Publishers, London, 1999.
- Iseki, K.; Ideal theory of semiring, Proceedings of the Japan Academy 1956, 32, 554-559.
- Iseki, K.; Ideals in semirings, Proceedings of the Japan Academy 1958, 34(1), 29-31.
- Iseki, K.; Quasi-ideals in semirings without zero, Proceedings of the Japan Academy 1958, 34(2), 79-81.
- SG Quek, H Garg, G Selvachandran, M Palanikumar, K Arulmozhi,VIKOR and TOPSIS framework with a truthful-distance measure for the (t, s)-regulated interval-valued neutrosophic soft set, Soft Computing, 1-27, 2023.
- M Palanikumar, K Arulmozhi, A Iampan, Multi criteria group decision making based on VIKOR and TOPSIS methods for Fermatean fuzzy soft with aggregation operators, ICIC Express Letters 16 (10), 11291138, 2022.
- M Palanikumar, K Arulmozhi, MCGDM based on TOPSIS and VIKOR using Pythagorean neutrosophic soft with aggregation operators, Neutrosophic Sets and Systems,, 538-555, 2022.
- M Palanikumar, S Broumi, Square root Diophantine neutrosophic normal interval-valued sets and their aggregated operators in application to multiple attribute decision making, International Journal of Neutro- sophic Science, 4, 2022.
- G. Manikandan, M. Palanikumar, P. Vijayalakshmi and Aiyared Iampan, New algebraic structure for Diophantine neutrosophic subbisemirings of bisemirings
- M Palanikumar, K Arulmozhi, Novel possibility Pythagorean interval valued fuzzy soft set method for a decision making, TWMS J. App. and Eng. Math. V.13, N.1, 2023, pp. 327-340.
- M Palanikumar, K Arulmozhi, Novel possibility Pythagorean interval valued fuzzy soft set method for a decision making, TWMS J. App. and Eng. Math. V.13, N.1, 2023, pp. 327-340.
- M Palanikumar, N Kausar, H Garg, A Iampan, S Kadry, M Sharaf, Medical robotic engineering selec- tion based on square root neutrosophic normal interval-valued sets and their aggregated operators, AIMS Mathematics, 8(8), 2023, 17402-17432.
- Palanikumar, M.; Iampan, A.; Spherical Fermatean interval valued fuzzy soft set based on multi criteria group decision making, International Journal of Innovative Computing, Information and Control 2022, 18(2), 607-619.
- Palanikumar, M.; Iampan, A.; Novel approach to decision making based on type-II generalized Fermatean bipolar fuzzy soft sets, International Journal of Innovative Computing, Information and Control 2022, 18(3), 769-781.
- Palanikumar, M.; Arulmozhi, K.; On intuitionistic fuzzy normal subbisemiring of bisemiring, Nonlinear Studies 2021, 28(3), 717-721.
- Peng, X.; Yang, Y.; Fundamental properties of interval valued Pythagorean fuzzy aggregation operators, International Journal of Intelligent Systems 2016, 31(5), 444-487.
- Rahman, K.; Abdullah, S.; Shakeel, M.; Sajjad Ali Khan, M.; Ullah, M.; Interval valued Pythagorean fuzzy geometric aggregation operators and their application to group decision-making problem, Cogent Mathematics 2017, 4(1), Article number: 1338638.
- Riaz, M.; Hashmi, M. R.; Linear Diophantine fuzzy set and its applications towards multi attribute decision making problems, 2019; Journal of Intelligent and Fuzzy Systems, Vol. 37(4). pp. 5417-5439.
- Singh, P. K.; Single-valued neutrosophic context analysis at distinct multi-granulation, Computational and Applied Mathematics 2019, 38, Article number: 80.
- Sen, M. K.; Ghosh, S.; An introduction to bisemirings, Southeast Asian Bulletin of Mathematics 2001, 28(3), 547-559.
- Smarandache, F.; A unifying field in logics. Neutrosophy: neutrosophic probability, set and logic, American Research Press, Rehoboth, 1999.
- Xu, R. N.; Li, C. L.; Regression prediction for fuzzy time series, Applied Mathematics-A Journal of Chinese Universities (Series. A) 2001, 16(4), 451-461.
- Yager, R. R.; Pythagorean membership grades in multi criteria decision-making, IEEE Transactions on Fuzzy Systems 2014, 22(4), 958-965.
- Yang, M. S.; Ko, C. H.; On a class of fuzzy c-numbers clustering procedures for fuzzy data, Fuzzy Sets and Systems 1996, 84(1), 49-60.
- Vandiver, H. S.; Note on a simple type of algebra in which the cancellation law of addition does not hold, Bulletin of the American Mathematical Society 1934, 40(12), 914-920.
- Zadeh, L. A.; Fuzzy sets, Information and Control 1965, 8(3), 338-353.
- G. Manikandan, M. Palanikumar, P. Vijayalakshmi and Aiyared Iampan, New algebraic structure for Diophantine neutrosophic subbisemirings of bisemirings
- I. M. Hezam, A. Gamal, M. Abdel-Basset, N. A. Nabeeh, and F. Smarandache, "Optimal selection of battery recycling plant location: strategies, challenges, perspectives, and sustainability," Soft Computing, pp. 1-32, 2023.
- R. P. Barbosa and F. Smarandache, "Pura vida neutrosophic algebra," Neutrosophic Systems with Applications, vol. 9, pp. 101-106, 2023.
- M. Abdel-Basset, A. Gamal, I. M. Hezam, and K. M. Sallam, "Sustainability assessment of optimal location of electric vehicle charge stations: a conceptual framework for green energy into smart cities," Environment, Development and Sustainability, pp. 1-39, 2023.
- L. A. Zadeh, "Information and control," Fuzzy sets, vol. 8, no. 3, pp. 338-353, 1965.
- I. B. Turksen, "Interval valued fuzzy sets based on normal forms," Fuzzy sets and systems, vol. 20, no. 2, pp. 191-210, 1986.
- K. T. Atanassov, "Intuitionistic fuzzy sets," Fuzzy sets and Systems, vol. 20, no. 1, pp. 87-96, 1986.
- S. Dey and G. C. Ray, "Properties of redefined neutrosophic composite relation," Neutrosophic Systems with Applications, vol. 7, pp. 1-12, 2023.
- K. Atanassov and G. Gargov, "Interval valued intuitionistic fuzzy sets," Fuzzy sets and systems, vol. 31, no. 3, pp. 343-349, 1989.
- F. Smarandache, "Invisible paradox," Neutrosophy/Neutrosophic Probability, Set, and Logic", Am. Res. Press, Rehoboth, pp. 22-23, 1998.
- Kalyan Adhikary, Prashnatita Pal and Jayanta Poray, The Minimum Spanning Tree Problem on networks with Neutrosophic numbers
- S. Broumi, A. Bakali, M. Talea, F. Smarandache, and L. Vladareanu, "Computation of shortest path problem in a network with sv-trapezoidal neutrosophic numbers," in Advanced Mechatronic Systems (ICAMechS), 2016 International Conference on. IEEE, 2016, pp. 417-422.
- S. L. T. N. D. . V. M. N. Ali, M., "A neutrosophic recommender system for medical diagnosis based on algebraic neutrosophic measures," Applied Soft Computing, p. in press, 2018.
- D. L. Q. S. L. . S. F. Ali, M., "Interval complex neutrosophic set: Formulation and applications in decision- making," International Journal of Fuzzy Systems, p. in press, 2018.
- S. L. K. M. . T. N. T. Ali, M., "Segmentation of dental x-ray images in medical imaging using neutrosophic orthogonal matrices," Expert Systems with Applications, vol. 91, pp. 434-441, 2018.
- S. L. . A. M. Thanh, N. D., "Neutrosophic recommender system for medical diagnosis based on algebraic similarity measure and clustering," FUZZ-IEEE 2017, pp. 1-6, 2017.
- S.-M. Chen and T.-H. Chang, "Finding multiple possible critical paths using fuzzy pert," IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), vol. 31, no. 6, pp. 930-937, 2001.
- A. Dey, R. Pradhan, A. Pal, and T. Pal, "The fuzzy robust graph coloring problem," in Proceedings of the 3rd International Conference on Frontiers of Intelligent Computing: Theory and Applications (FICTA) 2014: Volume 1. Springer, 2015, pp. 805-813.
- A. Dey and A. Pal, "Fuzzy graph coloring technique to classify the accidental zone of a traffic control," Annals of Pure and Applied Mathematics, vol. 3, no. 2, pp. 169-178, 2013.
- W. Pedrycz and S.-M. Chen, Granular computing and intelligent systems: design with information granules of higher order and higher type. Springer Science & Business Media, 2011, vol. 13.
- --, Information granularity, big data, and computational intelligence. Springer, 2014, vol. 8.
- --, Granular computing and decision-making: interactive and iterative approaches. Springer, 2015, vol. 10.
- A. Dey, A. Pal, and T. Pal, "Interval type 2 fuzzy set in fuzzy shortest path problem," Mathematics, vol. 4, no. 4, p. 62, 2016.
- J. B. Kruskal, "On the shortest spanning subtree of a graph and the traveling salesman problem," Proceedings of the American Mathematical society, vol. 7, no. 1, pp. 48-50, 1956.
- R. C. Prim, "Shortest connection networks and some generalizations," Bell system technical journal, vol. 36, no. 6, pp. 1389-1401, 1957.
- J. A. Bondy and U. S. R. Murty, Graph theory with applications. Macmillan London, 1976, vol. 290.
- E. W. Dijkstra, "A note on two problems in connexion with graphs," Numerische mathematik, vol. 1, no. 1, pp. 269-271, 1959.
- D. Harel and R. E. Tarjan, "Fast algorithms for finding nearest common ancestors," siam Journal on Computing, vol. 13, no. 2, pp. 338-355, 1984.
- H. Ishii, S. Shiode, T. Nishida, and Y. Namasuya, "Stochastic spanning tree problem," Discrete Applied Mathematics, vol. 3, no. 4, pp. 263-273, 1981.
- H. Ishii and T. Matsutomi, "Confidence regional method of stochastic spanning tree problem," Mathematical and computer modelling, vol. 22, no. 10, pp. 77-82, 1995.
- T. Itoh and H. Ishii, "An approach based on necessity measure to the fuzzy spanning tree problems," Journal of the Operations Research Society of Japan, vol. 39, no. 2, pp. 247-257, 1996.
- P.-T. Chang and E. Lee, "Fuzzy decision networks and deconvolution," Computers & Mathematics with Applications, vol. 37, no. 11, pp. 53-63, 1999.
- --, "Ranking of fuzzy sets based on the concept of existence," Computers & Mathematics with Applications, vol. 27, no. 9, pp. 1-21, 1994.
- A. Janiak and A. Kasperski, "The minimum spanning tree problem with fuzzy costs," Fuzzy Optimization and Decision Making, vol. 7, no. 2, pp. 105-118, 2008.
- Kalyan Adhikary, Prashnatita Pal and Jayanta Poray, The Minimum Spanning Tree Problem on networks with Neutrosophic numbers
- H. Zhao, Z. Xu, S. Liu, and Z. Wang, "Intuitionistic fuzzy mst clustering algorithms," Computers & Industrial Engineering, vol. 62, no. 4, pp. 1130-1140, 2012.
- X. Zhang and Z. Xu, "An mst cluster analysis method under hesitant fuzzy environment," Control and Cybernetics, vol. 41, no. 3, pp. 645-666, 2012.
- J. Ye, "Single-valued neutrosophic minimum spanning tree and its clustering method," Journal of intelligent Systems, vol. 23, no. 3, pp. 311-324, 2014.
- I. Kandasamy, "Double-valued neutrosophic sets, their minimum spanning trees, and clustering algorithm," Journal of Intelligent Systems, 2016.
- K. Mandal and K. Basu, "Improved similarity measure in neutrosophic environment and its application in finding minimum spanning tree," Journal of Intelligent & Fuzzy Systems, vol. 31, no. 3, pp. 1721-1730, 2016.
- S. Broumi, A. Bakali, M. Talea, F. Smarandache, and K. K. PK, "A new concept of matrix algorithm for mst in undirected interval valued neutrosophic graph," Collected Papers. Volume VIII: On Neutrosophic Theory and Applications, p. 444, 2022.
- M. S. Bavia, D. Nagarajan, S. Broumi, J. Kavikumar, and A. Rajkumar, "Neutrosophic in multi-criteria decision making for location selection," Neutrosophic Sets and Systems, vol. 48, pp. 142-153, 2022.
- A. Elhassouny, "Neutrosophic logic-based diana clustering algorithm," Neutrosophic Sets and Systems, vol. 55, no. 1, p. 30, 2023.
- K. Mohanta, A. K. Jha, A. Dey, and A. Pal, "An application of neutrosophic logic on an inventory model with two-level partial trade credit policy for time-dependent perishable products," Soft Computing, vol. 27, no. 8, pp. 4795-4822, 2023.
- A. Dey, R. Kumar, S. Broumi, and P. Bhowmik, "Different types of operations on neutrosophic graphs." International Journal of Neutrosophic Science (IJNS), vol. 19, no. 2, 2022.
- K. Mohanta, A. Dey, A. Pal, H. V. Long, and L. H. Son, "A study of m-polar neutrosophic graph with applications," Journal of Intelligent & Fuzzy Systems, vol. 38, no. 4, pp. 4809-4828, 2020.
- T. S. Lakhwani, K. Mohanta, A. Dey, S. P. Mondal, and A. Pal, "Some operations on dombi neutrosophic graph," Journal of Ambient Intelligence and Humanized Computing, pp. 1-19, 2022.
- H. Wang, F. Smarandache, Y. Zhang, and R. Sunderraman, "Single valued neutrosophic sets," Review of the Air Force Academy, no. 1, p. 10, 2010.
- A. Dey and A. Pal, "Computing the shortest path with words," International Journal of Advanced Intelligence Paradigms, vol. 12, no. 3-4, pp. 355-369, 2019.
- A. Dey, S. Broumi, L. H. Son, A. Bakali, M. Talea, and F. Smarandache, "A new algorithm for finding minimum spanning trees with undirected neutrosophic graphs," Granular Computing, vol. 4, pp. 63-69, 2019. Kalyan Adhikary, Prashnatita Pal and Jayanta Poray, The Minimum Spanning Tree Problem on networks with Neutrosophic numbers Received: Oct 16, 2023. Accepted: Jan 12, 2024
- References [1] Zadeh, L.A. Fuzzy Sets. Information and Control. 1965, Volume 8, pp. 338-353.
- Atanassov, K.T. Intuitionistic fuzzy sets. Fuzzy Sets and Systems, 1986, Volume 20, pp. 87-96.
- Smarandache, F. Neutrosophic set-a generalization of the Intuitionistic fuzzy sets. J.Pure Appl. Math., 2005, Volume 24, pp . 287-297.
- Arockiarani, I.; Martina Jency, J. More on Fuzzy Neutrosophic sets and Fuzzy Neutrosophic Topological spaces. International Journal of Innovative Research and Studies, 2014, Volume 3, pp. 643-652.
- Vijayabalaji, S.; Sivaramakrishnan, S. A cubic set theoretical approach to linear space. Abstract and Applied Analysis, 2015, Volume 2015, pp. 1-8.
- Vijayabalaji, S.; Sivaramakrishnan, S.; Balaji, P. Cubic n-Inner Product Space. Soft Computing Techniques in Engineering, Health, Mathematical and Social Sciences, 1st ed.; Pradip Debnath.; Mohiuddine, S.A. CRC Press, 2021; pp. 121-136.
- Vijayabalaji, S.; Sivaramakrishnan, S. Interval-valued anti fuzzy linear space. IEEE Xplore, 2020, pp. 839-841.
- Sivaramakrishnan. S, Vijayabalaji. S and Balaji. P. Neutrosophic interval-valued anti fuzzy linear space
- Arockiarani, I.; Sumathi, I. R. Fuzzy Neutrosophic Groups. Advances in Fuzzy Mathematics, 10(2), 2015, pp. 117-122.
- Broumi, S.; Bakali, A.; Talea, M.; Smarandache, F.; Singh, P. K. Properties of interval-valued neutrosophic graphs. In Fuzzy Multi-criteria Decision-Making Using Neutrosophic Sets, Springer, 2019, pp. 173-202.
- C ¸etkin, V.; Varol, B. P.; Aygün, H. On neutrosophic submodules of a module. Hacettepe J. Math. Stat., 2017, Volume 46, Issue 5, pp. 791-799.
- Hashim, H.; Abdullah, L.; Al-Quran, A. Interval neutrosophic vague sets. Neutrosophic Sets and Systems, 2019, Volume 25, pp. 66-75.
- Ibrahim, M. A.; Agboola, A. A. A.; Adeleke, E. O.; Akinleye, S. A. Introduction to neutrosophic subtraction algebra and neutrosophic subtraction semigroup. Int. J. Neutrosophic Sci. 2020, 2(1), 47-62.
- Iqbal, R.; Zafar, S.; Sardar, M. S. Neutrosophic cubic subalgebras and neutrosophic cubic closed ideals of B-algebras. Neutrosophic Sets Syst. 2016, 14, 47-60.
- Jun, Y. B.; Kim, C. S.; Yang, K. O. Cubic sets. Ann. Fuzzy Math. Inform. 2012, 4(1), 83-98.
- Jun, Y. B.; Kim, S. J.; Smarandache, F. Interval neutrosophic sets with applications in BCK/BCI-algebra. Axioms 2018, 7(2), 23-35.
- Jun, Y. B.; Smarandache, F.; Bordbar, H. Neutrosophic N-structures applied to BCK/BCI-algebras. In- form. 2017, 8(4), 128.
- Jun, Y. B.; Smarandache, F.; Kim, C. S. Neutrosophic cubic sets. New Math. Nat. Comput. 2017, 13(1), 41-54.
- Kandasamy, W. B. V.; Smarandache, F.; Some Neutrosophic Algebraic structures and Neutrosophic N- Algebraic structures. Hexis, Phoenix, 2006, Arizona.
- Khalid, M.; Khalid, N. A.; Khalid, H.; Broumi, S. Multiplicative interpretation of neutrosophic cubic set on B-algebra. Int. J. Neutrosophic Sci. 2020, 1(2), 64-73.
- Khan, M.; Anis, S.; Smarandache, F.; Jun, Y. B. Neutrosophic N-structures and their applications in semigroups. Ann. Fuzzy Math. Inform. 2017, 14(6), 583-598.
- Muralikrishna, P.; Kumar, D. S. Neutrosophic approach on normed linear space. Neutrosophic Sets and Systems, 2019, Volume 30, pp. 225-240.
- Preethi, D.; Rajareega, S.; Vimala, J.; Selvachandran, G.; Smarandache, F. Single-valued neutrosophic hyperrings and single-valued neutrosophic hyperideals. Neutrosophic Sets and Systems, 2019, Volume 29, pp. 121-128.
- Sivaramakrishnan, S.; Suresh, K. Interval-valued anti fuzzy subring. Journal of Applied Science and and Computations, 2019, Volume 6, Issue 1, pp. 521-526.
- Sivaramakrishnan, S.; Suresh, K.; Elamozhi, K. Anti Q-fuzzy M -semigroup. International Journal of Ad- vanced Research Trends in Engineering & Technology, 2019, Volume 6, Issue 6, pp.7-10.
- Smarandache, F. A unifying field in logics: neutrosophic logic. In Philosophy, American Research Press, 1999, pp. 1-141.
- Smarandache, F.; Neutrosophy and neutrosophic logic. First International Conference on Neutrosophy, Neutrosophic Logic, Set, Probability, and Statistics University of New Mexico, Gallup, NM 87301, USA, 2002.
- Smarandache, F.; Sunderraman, R.; Wang, H.; Zhang, Y. Interval Neutrosophic Sets and Logic: Theory and applications in computing. HEXIS Neutrosophic Book Series, No. 5, Ann Arbor, Michigan, 2005.
- Songsaeng, M.; Iampan, A. Fuzzy proper UP-filters of UP-algebras. Honam Math. J. 2019, 41(3), 515-530.
- Songsaeng, M.; Iampan, A. Neutrosophic cubic set theory applied to UP-algebras. Thai J. Math. (accepted).
- Songsaeng, M.; Iampan, A. Neutrosophic set theory applied to UP-algebras. Eur. J. Pure Appl. Math. 2019, 12(4), 1382-1409.
- Sivaramakrishnan. S, Vijayabalaji. S and Balaji. P. Neutrosophic interval-valued anti fuzzy linear space
- Songsaeng, M.; Iampan, A. Neutrosophic sets in UP-algebras by means of interval-valued fuzzy sets. J. Int. Math. Virtual Inst. 2020, 10(1), 93-122.
- Vijayabalaji, S.; Balaji, P.; Karthikeyan, S. Quad tree to Image âA ¸S A Reconstruction Approach Using Rough Matrix. International Journal of Applied Engineering Research, 2015, Volume 10, Issue 72, pp. 78-82.
- Vijayabalaji, S.; Balaji, P.; Karthikeyan, S. 3-valued logic in quad tree using rough matrix. International Journal of Applied Engineering Research, 2015, Volume 10, Issue 80, pp. 233-236.
- Vijayabalaji, S.; Balaji, P. Construction of QRM using Dense Factor in Quadtree. Asian Journal of Research in Social Sciences and Humanities, Asian Research Consortium, 2016, 6(8), pp. 2573-2581.
- Vijayabalaji, S.; Sivaramakrishnan, S.; Kalaiselvan, S. n-normed left-Linear space. International Journal of Applied Engineering Research, 2015, Volume 10, no.72, pp. 10-14.
- Vijayabalaji, S.; Sivaramakrishnan, S. Cartesian Product and Homomorphism of Interval-Valued Fuzzy Linear Space. Int. J. Open Problems Compt. Math., 2012, Volume 5, No.4, pp. 93-103.
- Wang, H.; Smarandache, F.; Zhang, Y.; Sunderraman, R. Single valued neutrosophic sets. Technical sci- ences and applied Mathematics, 2012, pp. 10-14.
- Wang, H.; Interval Neutrosophic Sets and Logic: Theory and Applications in Computing. Dissertation, Georgia State University, 2006.
- Zadeh, L. A.; The concept of a linguistic variable and its application to approximate reasoningI, Inform. Sci., 1975, Volume 8, pp. 199-249.
- Zadeh, L. A.; Fuzzy sets. Inf. Cont. 1965, 8, 338-353.
- Sivaramakrishnan. S, Vijayabalaji. S and Balaji. P. Neutrosophic interval-valued anti fuzzy linear space
- Awan, U., & Sroufe, R. (2022). Sustainability in the circular economy: insights and dynamics of designing circular business models. Applied Sciences, 12(3), 1521.
- Abdel-Basset, M., Gamal, A., Hezam, I. M., & Sallam, K. M. (2023). Sustainability assessment of optimal location of electric vehicle charge stations: a conceptual framework for green energy into smart cities. Environment, Development and Sustainability, 1-39.
- Aungkulanon, P., Atthirawong, W., Sangmanee, W., & Luangpaiboon, P. (2023). Fuzzy Techniques and Adjusted Mixture Design-Based Scenario Analysis in the CLMV (Cambodia, Lao PDR, Myanmar and Vietnam) Subregion for Multi-Criteria Decision Making in the Apparel Industry. Mathematics, 11(23), 4743.
- Sawik, B. (2023). Space Mission Risk, Sustainability and Supply Chain: Review, Multi-Objective Opti- mization Model and Practical Approach. Sustainability, 15(14), 11002.
- M. Kamran, N. S, M. S Hameed, S. K. Khan, S. Broumi, Sine Trigonometric Aggregation Operators with Single-Valued Neutrosophic Z-Numbers: Application in Business Site Selection 5. Abdel-Basset, M., Gamal, A., Hezam, I. M., & Sallam, K. M. (2023). An Effective Analysis of Risk Assess- ment and Mitigation Strategies of Photovoltaic Power Plants Based on Real Data: Strategies, Challenges, Perspectives, and Sustainability. International Journal of Energy Research, 2023.
- Wang, K., Ying, Z., Goswami, S. S., Yin, Y., & Zhao, Y. (2023). Investigating the Role of Artificial Intel- ligence Technologies in the Construction Industry Using a Delphi-ANP-TOPSIS Hybrid MCDM Concept under a Fuzzy Environment. Sustainability, 15(15), 11848.
- Martin, N., Smarandache, F., & Sudha, S. (2023). A Novel Method of Decision Making Based on Plithogenic Contradictions. Neutrosophic Systems with Applications, 10, 12-24.
- Kamran, M., Ismail, R., Al-Sabri, E. H. A., Salamat, N., Farman, M., & Ashraf, S. (2023). An optimization strategy for MADM framework with confidence level aggregation operators under probabilistic neutrosophic hesitant fuzzy rough environment. Symmetry, 15(3), 578.
- Kamran, M., Ashraf, S., & Hameed, M. S. (2023). A promising approach with confidence level aggregation operators based on single-valued neutrosophic rough sets. Soft Computing, 1-24.
- Hezam, I. M., Gamal, A., Abdel-Basset, M., Nabeeh, N. A., & Smarandache, F. (2023). Optimal selection of battery recycling plant location: strategies, challenges, perspectives, and sustainability. Soft Computing, 1-32.
- Zadeh, L. A. (1965). Fuzzy sets. Information and control 8(3), 338-353.
- Ai, A. I. (2020). Fuzzy logic and artificial intelligence: a special issue on emerging techniques and their applications. IEEE Trans. Fuzzy Syst., 28(12), 3063.
- Nguyen, A. T., Taniguchi, T., Eciolaza, L., Campos, V., Palhares, R., & Sugeno, M. (2019). Fuzzy control systems: Past, present and future. IEEE Computational Intelligence Magazine, 14(1), 56-68.
- Balusa, B. C., & Gorai, A. K. (2021). Development of fuzzy pattern recognition model for underground metal mining method selection. International Journal of Ambient Computing and Intelligence (IJACI), 12(4), 64-78.
- Pauker, S. G., & Kassirer, J. P. (1987). Decision analysis. New England Journal of Medicine, 316(5), 250-258.
- Wang, C., Sun, Q., Li, Z., & Zhang, H. (2020). Human-like lane change decision model for autonomous vehicles that considers the risk perception of drivers in mixed traffic. Sensors, 20(8), 2259.
- Borger, E., Gradel, E., & Gurevich, Y. (2001). The classical decision problem. Springer Science & Business Media.
- Davis, J. H., Stasser, G., Spitzer, C. E., & Holt, R. W. (1976). Changes in group members' decision pref- erences during discussion: An illustration with mock juries. Journal of Personality and Social Psychology, 34(6), 1177.
- Hayati, K., Latief, Y., & Rarasati, A. D. (2019). Causes and problem identification in construction claim management. In IOP Conference Series: Materials Science and Engineering (Vol. 469, No. 1, p. 012082). IOP Publishing.
- Hezam, I. M., Mishra, A. R., Rani, P., Saha, A., Smarandache, F., & Pamucar, D. (2023). An integrated decision support framework using single-valued neutrosophic-MASWIP-COPRAS for sustainability assess- ment of bioenergy production technologies. Expert Systems with Applications, 211, 118674.
- Kamran, M., Ashraf, S., & Naeem, M. (2023). A Promising Approach for Decision Modeling With Single- Valued Neutrosophic Probabilistic Hesitant Fuzzy Dombi Operators. Yugoslav Journal of Operations Re- search.
- Rasheed, M., Tag-Eldin, E., Ghamry, N. A., Hashmi, M. A., Kamran, M., & Rana, U. (2023). Decision- making algorithm based on Pythagorean fuzzy environment with probabilistic hesitant fuzzy set and Cho- quet integral. AIMS Mathematics, 8(5), 12422-12455.
- Zadeh, L. A. (2011). A note on Z-numbers. Information sciences, 181(14), 2923-2932.
- M. Kamran, N. S, M. S Hameed, S. K. Khan, S. Broumi, Sine Trigonometric Aggregation Operators with Single-Valued Neutrosophic Z-Numbers: Application in Business Site Selection
- Kang, B., Wei, D., Li, Y., & Deng, Y. (2012). A method of converting Z-number to classical fuzzy number. Journal of information & computational science, 9(3), 703-709.
- Sari, I. U., & Kahraman, C. (2021). Intuitionistic fuzzy Z-numbers. In Intelligent and Fuzzy Techniques: Smart and Innovative Solutions: Proceedings of the INFUS 2020 Conference, Istanbul, Turkey, July 21-23, 2020 (pp. 1316-1324). Springer International Publishing.
- Ashraf, S., Abbasi, S. N., Naeem, M., & Eldin, S. M. (2023). Novel decision aid model for green supplier se- lection based on extended EDAS approach under pythagorean fuzzy Z-numbers. Frontiers in Environmental Science, 11, 1137689.
- Ramya, G. (2023). Trigonometric Similarity Measures of Pythagorean Neutrosophic Hypersoft Sets. Neu- trosophic Systems with Applications, 9, 91-100.
- Ben-Akiva, M., Morikawa, T., & Shiroishi, F. (1992). Analysis of the reliability of preference ranking data. Journal of business research, 24(2), 149-164.
- Chen, L., Wang, Y., & Yang, D. (2022). Picture fuzzy Z-linguistic set and its application in multiple attribute group decision-making. Journal of Intelligent & Fuzzy Systems, (Preprint), 1-15.
- Ashraf, S., Sohail, M., Fatima, A., & Eldin, S. M. (2023). Evaluation of economic development policies using a spherical fuzzy extended TODIM model with Z-numbers. Plos one, 18(6), e0284862.
- Du, S., Ye, J., Yong, R., & Zhang, F. (2021). Some aggregation operators of neutrosophic Z-numbers and their multicriteria decision making method. Complex & Intelligent Systems, 7, 429-438.
- Ye, J., Du, S., & Yong, R. (2022). AczelAlsina weighted aggregation operators of neutrosophic Z-numbers and their multiple attribute decision-making method. International Journal of Fuzzy Systems, 24(5), 2397- 2410.
- Ye, J., Yong, R., & Du, S. (2022). Multiattribute group decision-making method in terms of linguistic neutrosophic Z-number weighted aggregation operators. Journal of Mathematics, 2022.
- Ashraf, S., Chohan, M. S., Ahmad, S., Hameed, M. S., & Khan, F. (2023). Decision Aid Algorithm for Kidney Transplants Under Disc Spherical Fuzzy sets with distinctive Radii Information. IEEE Access.
- Ali, S., Kousar, M., Xin, Q., Pamucar, D., Hameed, M. S., & Fayyaz, R. (2021). Belief and possibility belief interval-valued N-soft set and their applications in multi-attribute decision-making problems. Entropy, 23(11), 1498.
- Hameed, M. S., Ahmad, Z., Ali, S., Mahu, A. L., & Mosa, W. F. (2022). Multicriteria Decision-Making Problem via Weighted Cosine Similarity Measure and Several Characterizations of Hypergroup and (Weak) Polygroups under the Triplet Single-Valued Neutrosophic Structure. Mathematical Problems in Engineering, 2022.
- Hameed, M. S., Ahmad, Z., Ali, S., Kamran, M., & Lula Babole, A. R. (2023). An approach to (µ, ν, ω)- single-valued neutrosophic submodules. Scientific Reports, 13(1), 751.
- M. Kamran, N. S, M. S Hameed, S. K. Khan, S. Broumi, Sine Trigonometric Aggregation Operators with Single-Valued Neutrosophic Z-Numbers: Application in Business Site Selection References 1. Zadeh, L. A.; Fuzzy sets, Information and Control 1965, 8, no. 3, 338-353.
- Gau, W. L.; Buehrer, D. J.; Vague sets, IEEE Transactions on Systems, Man and Cybernetics 1993, 23, no. 2, 610-613.
- Atanassov, K; Intuitionistic fuzzy sets, Fuzzy Sets and Systems 1986, 20, no. 1, 87-96.
- Smarandache, F.; A unifying field in logics: neutrosophic logic. Neutrosophy, neutrosophic set, neutrosophic probability (fourth edition), Rehoboth American Research Press, 2008.
- Smarandache, F.; Neutrosophic set-a generalization of the intuitionistic fuzzy set, International Journal of Pure and Applied Mathematics 2005, 24, no. 3, 287-297.
- Ahsan, J.; Saifullah, K.; Khan, F. Fuzzy semirings, Fuzzy Sets and systems 1993, 60, 309-320.
- G. Manikandan, M. Palanikumar, P. Vijayalakshmi, G. Shanmugam and A. Iampan, Extension for neutrosophic vague subbisemirings of bisemirings
- SG Quek, H Garg, G Selvachandran, M Palanikumar, K Arulmozhi,VIKOR and TOPSIS framework with a truthful-distance measure for the (t, s)-regulated interval-valued neutrosophic soft set, Soft Computing, 1-27, 2023.
- M Palanikumar, K Arulmozhi, A Iampan, Multi criteria group decision making based on VIKOR and TOPSIS methods for Fermatean fuzzy soft with aggregation operators, ICIC Express Letters 16 (10), 11291138, 2022.
- M Palanikumar, K Arulmozhi, MCGDM based on TOPSIS and VIKOR using Pythagorean neutrosophic soft with aggregation operators, Neutrosophic Sets and Systems,, 538-555, 2022.
- M Palanikumar, S Broumi, Square root Diophantine neutrosophic normal interval-valued sets and their aggregated operators in application to multiple attribute decision making, International Journal of Neutro- sophic Science, 4, 2022.
- M Palanikumar, K Arulmozhi, Novel possibility Pythagorean interval valued fuzzy soft set method for a decision making, TWMS J. App. and Eng. Math. V.13, N.1, 2023, pp. 327-340.
- M Palanikumar, K Arulmozhi, Novel possibility Pythagorean interval valued fuzzy soft set method for a decision making, TWMS J. App. and Eng. Math. V.13, N.1, 2023, pp. 327-340.
- M Palanikumar, N Kausar, H Garg, A Iampan, S Kadry, M Sharaf, Medical robotic engineering selec- tion based on square root neutrosophic normal interval-valued sets and their aggregated operators, AIMS Mathematics, 8(8), 2023, 17402-17432.
- Palanikumar, M.; Iampan, A.; Spherical Fermatean interval valued fuzzy soft set based on multi criteria group decision making, International Journal of Innovative Computing, Information and Control 2022, 18(2), 607-619.
- Palanikumar, M.; Iampan, A.; Novel approach to decision making based on type-II generalized Fermatean bipolar fuzzy soft sets, International Journal of Innovative Computing, Information and Control 2022, 18(3), 769-781.
- Palanikumar, M.; Arulmozhi, K.; On intuitionistic fuzzy normal subbisemiring of bisemiring, Nonlinear Studies 2021, 28(3), 717-721.
- Sen, M.K.; Ghosh, S.; Ghosh, S. An introduction to bisemirings. Southeast Asian Bulletin of Mathematics, 2004, 28(3), 547-559.
- Biswas, R.; Vague groups, International Journal of Computational Cognition 2006, 4, no. 2, 20-23.
- Arulmozhi K.; The algebraic theory of semigroups and semirings, Lap Lambert Academic Publishing, Mauritius, 2019.
- Golan, S. J; Semirings and their applications, Kluwer Academic Publishers, London, 1999.
- Hussian, F.; Hashism, R. M.; Khan, A.; Naeem, M.; Generalization of bisemirings, International Journal of Computer Science and Information Security 2016, 14, no. 9, 275-289.
- Vandiver, H.S. Note on a simple type of algebra in which the cancellation law of addition does not hold. Bulletin of the American Mathematical Society, 1934, 40(12), 914-920.
- Glazek, K. A guide to the literature on semirings and their applications in mathematics and information sciences. Springer, Dordrecht, Netherlands, 2002.
- Jun, Y.B.; Song, S.Z. Subalgebras and closed ideals of BCH-algebras based on bipolar-valued fuzzy sets. Scientiae Mathematicae Japonicae Online, 2008, 427-437.
- Lee, K.J. Bipolar fuzzy subalgebras and bipolar fuzzy ideals of BCK/BCI-algebras. Bulletin of the Malaysian Mathematical Sciences Society, 2009, 32(3), 361-373.
- Muhiuddin, G.; Harizavi, H.; Jun, Y.B. Bipolar-valued fuzzy soft hyper BCK ideals in hyper BCK algebras. Discrete Mathematics, Algorithms and Applications, 2020, 12(2), 2050018.
- Jana, C.; Senapati, T.; Shum, P.C.; Pal, M. Bipolar fuzzy soft subalgebras and ideals of BCK/BCI-algebras based on bipolar fuzzy points. Journal of Intelligent & Fuzzy Systems, 2019, 37(2), 2785-2795.
- G. Manikandan, M. Palanikumar, P. Vijayalakshmi, G. Shanmugam and A. Iampan, Extension for neutrosophic vague subbisemirings of bisemirings
- Zararsz, Z.; Riaz, M. Bipolar fuzzy metric spaces with application. Comp. Appl. Math. 2022, 41(49).
- Selvachandran, G.; Salleh, A.R. Algebraic Hyperstructures of vague soft sets associated with hyperrings and hyperideals. The Scientific World Journal, 2015, 2015, 780121.
- Jun, Y.B.; Kim, H.S.; Lee, K.J. Bipolar fuzzy translations in BCK/BCI-algebras. Journal of the Chungcheong Mathematical Society, 2009, 22(3), 399-408.
- Jun, Y.B.; Park, C.H. Filters of BCH-algebras based on bipolar-valued fuzzy sets. International Mathemat- ical Forum, 2009, 4(13), 631-643.
- Hussain, F. Factor bisemirings. Italian Journal of Pure and Applied Mathematics, 2015, 34, 81-88.
- G. Manikandan, M. Palanikumar, P. Vijayalakshmi, G. Shanmugam and A. Iampan, Extension for neutrosophic vague subbisemirings of bisemirings References
- Lim, Y., Edelenbos, J., & Gianoli, A. (2023). What is the impact of smart city development? Empirical evidence from a Smart City Impact Index. Urban Governance. https://doi.org/10.1016/j.ugj.2023.11.003.
- Zhang, F., Chan, A. P., & Li, D. (2023). Developing smart buildings to reduce indoor risks for safety and health of the elderly: A systematic and bibliometric analysis. Safety science, 168, 106310. https://doi.org/10.1016/j.ssci.2023.106310. _____________________________________________________________________________________ ___________________________________________________________
- Asmaa Elsayed, Comprehensive Review MEREC weighting method for Smart Building Selection for New Capital using neutrosophic theory
- Singh, M., & Pant, M. (2021). A review of selected weighing methods in MCDM with a case study. International Journal of System Assurance Engineering and Management, 12, 126-144. https://doi.org/10.1007/s13198-020-01033-3
- Ayan, B., Abacıoğlu, S., & Basilio, M. P. (2023). A Comprehensive Review of the Novel Weighting Methods for Multi-Criteria Decision-Making. Information, 14(5), 285. https://doi.org/10.3390/info14050285
- Keshavarz-Ghorabaee, M., Amiri, M., Zavadskas, E. K., Turskis, Z., & Antucheviciene, J. (2021). Determination of objective weights using a new method based on the removal effects of criteria (MEREC). Symmetry, 13(4), 525. https://doi.org/10.3390/sym13040525.
- Han, Z., Li, X., Sun, J., Wang, M., & Liu, G. (2023). An interactive multi-criteria decision-making method for building performance design. Energy and Buildings, 282, 112793. https://doi.org/10.1016/j.enbuild.2023.112793.
- Taherdoost, H., & Madanchian, M. (2023). Multi-criteria decision making (MCDM) methods and concepts. Encyclopedia, 3(1), 77-87. https://doi.org/10.3390/encyclopedia3010006.
- Smarandache, F. (1998). Neutrosophy: neutrosophic probability, set, and logic: analytic synthesis & synthetic analysis.
- Smarandache, F. (2001). A unifying field in logics: Neutrosophic logic, neutrosophic set, neutrosophic probability and statistics. arXiv preprint math/0101228
- Abdel-Basset, M., Saleh, M., Gamal, A., & Smarandache, F. (2019). An approach of TOPSIS technique for developing supplier selection with group decision making under type-2 neutrosophic number. Applied Soft Computing, 77, 438-452. https://doi.org/10.1016/j.asoc.2019.01.035
- Abdel-Monem, A., S. Mohamed , S., & S. Aziz , A. (2023). A Multi-Criteria Decision Making Methodology for Assessment Performance of Electrocoagulation System. Multicriteria Algorithms With Applications, 1, 19-30.
- Abouhawwash, M., Jameel, M., & S. Askar, S. (2023). Multi-Criteria Decision Making Model for Analysis Hydrogen Production for Economic Feasibility and Sustainable Energy. Multicriteria Algorithms With Applications, 1, 31-41.
- Trung, D. D., & Thinh, H. X. (2021). A multi-criteria decision-making in turning process using the MAIRCA, EAMR, MARCOS and TOPSIS methods: A comparative study. Advances in Production Engineering & Management, 16(4), 443-456. https://doi.org/10.14743/apem2021.4.412.
- Saidin, M. S., Lee, L. S., Marjugi, S. M., Ahmad, M. Z., & Seow, H. V. (2023). Fuzzy Method Based on the Removal Effects of Criteria (MEREC) for Determining Objective Weights in Multi- Criteria Decision-Making Problems. Mathematics, 11(6), 1544. https://doi.org/10.3390/math11061544 _____________________________________________________________________________________ ___________________________________________________________
- Asmaa Elsayed, Comprehensive Review MEREC weighting method for Smart Building Selection for New Capital using neutrosophic theory
- Shanmugasundar, G., Sapkota, G., Čep, R., & Kalita, K. (2022). Application of MEREC in multi- criteria selection of optimal spray-painting robot. Processes, 10(6), 1172. https://doi.org/10.3390/pr10061172
- Mesran, M., Siregar, D., Nasution, S. D., Sahir, S. H., Diansyah, T. M., Agustina, I., ... & Rahim, R. (2019, March). The VIKOR Method to Support the Effectiveness of Decisions in Determining Work Incentive Recipients. In Journal of Physics: Conference Series (Vol. 1175, No. 1, p. 012043). IOP Publishing. https://doi.org/10.1088/1742-6596/1175/1/012043
- Sayadi, M. K., Heydari, M., & Shahanaghi, K. (2009). Extension of VIKOR method for decision making problem with interval numbers. Applied Mathematical Modelling, 33(5), 2257-2262. https://doi.org/10.1016/j.apm.2008.06.002
- Shumaiza, Akram, M., Al-Kenani, A. N., & Alcantud, J. C. R. (2019). Group decision-making based on the VIKOR method with trapezoidal bipolar fuzzy information. Symmetry, 11(10), 1313. https://doi.org/10.3390/sym11101313
- Yazdani, M., Zarate, P., Kazimieras Zavadskas, E., & Turskis, Z. (2019). A combined compromise solution (CoCoSo) method for multi-criteria decision-making problems. Management Decision, 57(9), 2501-2519. https://doi.org/10.1108/MD-05-2017-0458
- Çelikbilek, Y., & Tüysüz, F. (2020). An in-depth review of theory of the TOPSIS method: An experimental analysis. Journal of Management Analytics, 7(2), 281-300. https://doi.org/10.1080/23270012.2020.1748528
- Tzeng, G. H., & Huang, J. J. (2011). Multiple attribute decision making: methods and applications. CRC press.
- Yoon, K. P., & Hwang, C. L. (1995). Multiple attribute decision making: an introduction. Sage publications.
- Smarandache, F. (2023). Foundation of Revolutionary Topologies: An Overview, Examples, Trend Analysis, Research Issues, Challenges, and Future Directions. Neutrosophic Systems With Applications, 13, 45-66. https://doi.org/10.61356/j.nswa.2024.125
- M. Sabry, W. (2023). An Integrated Neutrosophic Approach for the Urban Energy Internet Assessment under Sustainability Dimensions. Neutrosophic Systems With Applications, 12, 22-35. https://doi.org/10.61356/j.nswa.2023.109
- F. Marty, Sur une généralisation de la Notion de Groupe, 8th Congress Math. Scandinaves, Stockholm, Sweden, (1934), 45-49.
- F. Smarandache, SuperHyperAlgebra and Neutrosophic SuperHyperAlgebra, Section into the authors book Nidus Idearum. Scilogs, II: de rerum consectatione, Second Edition, 107-108, 2016, https://fs.unm.edu/NidusIdearum2-ed2.pdf
- Florentin Smarandache, n-SuperHyperGraph and Plithogenic n-SuperHyperGraph, in Nidus Idearum, Vol. 7, second and third editions, Pons, Bruxelles, pp. 107-113, 2019, http://fs.unm.edu/NidusIdearum7-ed3.pdf.
- F. Smarandache, Extension of HyperGraph to n-SuperHyperGraph and to Plithogenic n- SuperHyperGraph, and Extension of HyperAlgebra to n-ary (Classical-/Neutro-/Anti-)
- HyperAlgebra, Neutrosophic Sets and Systems, vol. 33, 2020, pp. 290-296. DOI: 10.5281/zenodo.3783103, http://fs.unm.edu/NSS/n-SuperHyperGraph-n-HyperAlgebra.pdf
- F. Smarandache, Introduction to the n-SuperHyperGraph -the most general form of graph today, Neutrosophic Sets and Systems, Vol. 48, 2022, pp. 483-485, DOI: 10.5281/zenodo.6096894, https://fs.unm.edu/NSS/n-SuperHyperGraph.pdf
- Florentin Smarandache, Foundation of Revolutionary Topologies: An Overview, Examples, Trend Analysis, Research Issues, Challenges, and Future Directions, Neutrosophic Systems with Applications, Vol. 13, 2024, https://fs.unm.edu/TT/RevolutionaryTopologies.pdf, https://fs.unm.edu/TT/ _______________________________________________________________________ ____________________________________________________________________
- Florentin Smarandache, Foundation of SuperHyperStructure & Neutrosophic SuperHyperStructure (review paper)
- F. Smarandache The SuperHyperFunction and the Neutrosophic SuperHyperFunction, Neutrosophic Sets and Systems, Vol. 49, 2022, pp. 594- 600. http://fs.unm.edu/NSS/SuperHyperFunction37.pdf, DOI: 10.5281/zenodo.6466524
- F. Smarandache, Introduction to SuperHyperAlgebra and Neutrosophic SuperHyperAlgebra, Journal of Algebraic Hyperstructures and Logical Algebras Volume 3, Number 2, pp. 17-24, 2022.
- A.A.A. Agboola, M.A. Ibrahim, E.O. Adeleke: Elementary Examination of NeutroAlgebras and AntiAlgebras viz-a-viz the Classical Number Systems. International Journal of Neutrosophic Science (IJNS), Volume 4, 2020, pp. 16-19. DOI: http://doi.org/10.5281/zenodo.3989530 http://fs.unm.edu/ElementaryExaminationOfNeutroAlgebra.pdf
- A.A.A. Agboola: Introduction to NeutroGroups. International Journal of Neutrosophic Science (IJNS), Volume 6, 2020, pp. 41-47. DOI: http://doi.org/10.5281/zenodo.3989823 http://fs.unm.edu/IntroductionToNeutroGroups.pdf
- A.A.A. Agboola: Introduction to NeutroRings. International Journal of Neutrosophic Science (IJNS), Volume 7, 2020, pp. 62-73. DOI: http://doi.org/10.5281/zenodo.3991389 http://fs.unm.edu/IntroductionToNeutroRings.pdf
- Akbar Rezaei, F. Smarandache: On Neutro-BE-algebras and Anti-BE-algebras. International Journal of Neutrosophic Science (IJNS), Volume 4, 2020, pp. 8-15. DOI: http://doi.org/10.5281/zenodo.3989550 http://fs.unm.edu/NA/OnNeutroBEalgebras.pdf
- F. Smarandache, Introduction to NeutroAlgebraic Structures and AntiAlgebraic Structures [ http://fs.unm.edu/NA/NeutroAlgebraicStructures-chapter.pdf ], in his book Advances of Standard and Nonstandard Neutrosophic Theories, Pons Publishing House Brussels, Belgium, Chapter 6, pages 240- 265, 2019; http://fs.unm.edu/AdvancesOfStandardAndNonstandard.pdf
- Florentin Smarandache: NeutroAlgebra is a Generalization of Partial Algebra. International Journal of Neutrosophic Science (IJNS), Volume 2, 2020, pp. 8-17. DOI: http://doi.org/10.5281/zenodo.3989285 http://fs.unm.edu/NeutroAlgebra.pdf
- F. Smarandache: Introduction to NeutroAlgebraic Structures and AntiAlgebraic Structures (revisited). Neutrosophic Sets and Systems, vol. 31, pp. 1-16, 2020. DOI: 10.5281/zenodo.3638232 http://fs.unm.edu/NSS/NeutroAlgebraic-AntiAlgebraic-Structures.pdf
- Florentin Smarandache, Generalizations and Alternatives of Classical Algebraic Structures to NeutroAlgebraic Structures and AntiAlgebraic Structures, Journal of Fuzzy Extension and Applications (JFEA), J. Fuzzy. Ext. Appl. Vol. 1, No. 2 (2020) 85-87, DOI: _______________________________________________________________________ ____________________________________________________________________
- Florentin Smarandache, Foundation of SuperHyperStructure & Neutrosophic SuperHyperStructure (review paper) 10.22105/jfea.2020.248816.1008 http://fs.unm.edu/NeutroAlgebra-general.pdf
- Mohammad Hamidi, Florentin Smarandache: Neutro-BCK-Algebra. International Journal of Neutrosophic Science (IJNS), Volume 8, 2020, pp. 110-117. DOI: http://doi.org/10.5281/zenodo.3991437 http://fs.unm.edu/Neutro-BCK-Algebra.pdf
- A. Rezaei, F. Smarandache, S. Mirvakili, Applications of (Neutro/Anti)sophications to SemiHyperGroups, Journal of Mathematics, 1-7, 2021. https://www.hindawi.com/journals/jmath/2021/6649349/
- F. Smarandache, M. AlTahan (editors), Theory and Applications of NeutroAlgebras as Generalizations of Classical Algebras, IGI Global, USA, 2022, https://www.igi- global.com/book/theory-applications-neutroalgebras-generalizations-classical/284563
- D. Molodtsov, Soft Set Theory First Results. Computer Math. Applic. 37, 19-312, 1999.
- F. Smarandache, Extension of Soft Set to HyperSoft Set, and then to Plithogenic Hypersoft Set, Neutrosophic Sets and Systems, vol. 22, 2018, pp. 168-170, DOI: 10.5281/zenodo.2159754; http://fs.unm.edu/NSS/ExtensionOfSoftSetToHypersoftSet.pdf
- Florentin Smarandache, New Types of Soft Sets "HyperSoft Set, IndetermSoft Set, IndetermHyperSoft Set, and TreeSoft Set": An Improved Version, Neutrosophic Systems with Applications, 35-41, Vol. 8, 2023, http://fs.unm.edu/TSS/NewTypesSoftSets-Improved.pdf.
- F. Smarandache, Foundation of the SuperHyperSoft Set and the Fuzzy Extension SuperHyperSoft Set: A New Vision, Neutrosophic Systems with Applications, Vol. 11, 48-51, 2023, Neutrosophic Systems with Applications, Vol. 11, 48-51, 2023, http://fs.unm.edu/TSS/SuperHyperSoftSet.pdf. Received: Oct 12, 2023. Accepted: Jan 9, 2024