Discrete cosine transforms on quantum computers
2001, Image and Signal Processing …
Abstract
A classical computer does not allow to calculate a dis-crete cosine transform on N points in less than linear time. This trivial lower bound is no longer valid for a computer that takes advantage of quantum mechanical superposition, entanglement, and inter$erence principles. In fact, ...
References (12)
- P. W. Shor, "Algorithms for Quantum Computation: Discrete Logarithm and Factoring," in Proc. FOCS 94. 1994, pp. 124-134, IEEE Computer Society Press.
- J.I. Cirac and P. Zoller, "Quantum computations with cold trapped ions," Phys. Rev. Lett., vol. 74, no. 20, pp. 4091-4094, 1995.
- H. Nägerl, D. Leibfried, H. Rohde, J. Thalhammer, G. Eschner, F. Schmidt-Kaler, and R. Blatt, "Laser ad- dressing of individual ions in a linear ion trap," Phys- ical Review A, vol. 60, no. 1, pp. 145-148, 1999.
- B.E. Kane, "A silicon-based nuclear spin quantum computer," Nature, vol. 393, no. 6681, pp. 133-137, 1998.
- A. Imamoglu, D.D. Awschalom, G. Burkard, D.P. Di- Vincenzo, D. Loss, M. Sherwin, and A. Small, "Quan- tum information processing using quantum dot spins and cavity-qed," Phys. Rev. Lett., vol. 83, pp. 4204- 4207, 1999.
- A. Rauschenbeutel, G. Nogues, S. Osnaghi, P. Bertet, M. Brune, J.M. Raimond, and Haroche S., "Coherent operation of a tunable quantum phase gate in cavity QED," Phys. Rev. Lett., vol. 83, no. 24, pp. 5166- 5169, 1999.
- E. Knill, R. Laflamme, and G.J. Milburn, "A scheme for efficient quantum computation with linear optics," Nature, vol. 409, pp. 46-52, 2001.
- D. Kielpinski et al., "Recent results in trapped-ion quantum computing at NIST," To appear in Proc. of IQC 2001, 2001.
- K. R. Rao and P. Yip, Discrete Cosine Transform: Algorithms, Advantages, and Applications, Academic Press, 1990.
- A. Barenco et al., "Elementary gates for quantum computation," Physical Review A, vol. 52, no. 5, pp. 3457-3467, Nov. 1995.
- V. Wickerhauser, Adapted Wavelet Analysis from The- ory to Software, A.K. Peters, Wellesley, 1993.
- M. Püschel, M. Rötteler, and Th. Beth, "Fast Quan- tum Fourier Transforms for a Class of non-abelian Groups," in Proc. AAECC-13. 1999, vol. 1719 of LNCS, pp. 148-159, Springer.