Meteorology-driven PM 2.5 interannual variability over East Asia
https://doi.org/10.1016/J.SCITOTENV.2023.166911Abstract
that meteorological variations contributed more to PM 2.5 IAV than emission variations. Thus, when setting policies for complying with the WHO PM 2.5-related air quality guideline levels, the highest annual PM 2.5 associated with climate extremes should be considered instead of that based on average climate conditions.
Key takeaways
AI
AI
- Meteorological variations significantly influence PM 2.5 interannual variability (IAV) more than emission variations.
- The study employs a 100-year CESM1 simulation with fixed emissions from the year 2000 to analyze PM 2.5 IAV.
- Top three dominant meteorological parameters affecting PM 2.5 IAV are humidity, precipitation, and ventilation, each contributing differently across regions.
- PM 2.5 IAV is approximately 2-12% over continental East Asia, with significant regional differences observed.
- Policymakers must consider meteorology-driven PM 2.5 IAV to meet WHO air quality guidelines effectively.
References (60)
- Ali, M.A., et al., 2022. Accuracy assessment of CAMS and MERRA-2 reanalysis PM 2.5 and PM 10 concentrations over China. Atmos. Environ. 288, 119297 https://doi.org/ 10.1016/j.atmosenv.2022.119297.
- Aw, J., Kleeman, M.J., 2003. Evaluating the first-order effect of intraannual temperature variability on urban air pollution. J. Geophys. Res.-Atmos. 108 (D12) https://doi. org/10.1029/2002JD002688.
- Banks, A., Kooperman, G.J., Xu, Y., 2022. Meteorological influences on anthropogenic PM2.5 in future climates: species level analysis in the community earth system model v2, Earth's. Future 10(2), e2021EF002298. https://doi.org/10.1029/ 2021EF002298.
- Buchard, V., et al., 2017. The MERRA-2 aerosol reanalysis, 1980 onward. Part II: evaluation and case studies. J. Clim. 30 (17), 6851-6872. https://doi.org/10.1175/ JCLI-D-16-0613.1.
- Chan, C.K., Yao, X., 2008. Air pollution in mega cities in China. Atmos. Environ. 42 (1), 1-42. https://doi.org/10.1016/j.atmosenv.2007.09.003.
- Chang, C.P., Zhang, Y.S., Li, T., 2000. Interannual and interdecadal variations of the east Asian summer monsoon and tropical Pacific SSTs. Part I: roles of the subtropical ridge. J. Clim. 13 (24), 4310-4325. https://doi.org/10.1175/1520-0442(2000) 013<4310:IAIVOT>2.0.CO;2.
- Chang, L.Y., Xu, J.M., Tie, X.X., Wu, J.B., 2016. Impact of the 2015 El Nino event on winter air quality in China. Sci. Rep. 6, 34275. https://doi.org/10.1038/srep34275.
- Chen, J.-P., Tsai, I.-C., Lin, Y.-C., 2013. A statistical-numerical aerosol parameterization scheme. Atmos. Chem. Phys. 13 (20), 10483-10504. https://doi.org/10.5194/acp- 13-10483-2013.
- Chen, H., Wang, H., Sun, J., Xu, Y., Yin, Z., 2019. Anthropogenic fine particulate matter pollution will be exacerbated in eastern China due to 21st century GHG warming. Atmos. Chem. Phys. 19 (1), 233-243. https://doi.org/10.5194/acp-19-233-2019.
- Chou, C., Tu, J.Y., Yu, J.Y., 2003. Interannual variability of the western North Pacific summer monsoon: differences between ENSO and non-ENSO years. J. Climate 16 (13), 2275-2287. https://doi.org/10.1175/2761.1.
- Crouse, D.L., et al., 2012. Risk of nonaccidental and cardiovascular mortality in relation to long-term exposure to low concentrations of fine particulate matter: a Canadian national-level cohort study. Environ. Health Perspect. 120 (5), 708-714. https://doi. org/10.1289/ehp.1104049.
- Danabasoglu, G., et al., 2020. The community earth system model version 2 (CESM2). J. Adv. Model. Earth Syst. 12 (2), e2019MS001916 https://doi.org/10.1029/ 2019MS001916.
- Dawson, J.P., Adams, P.J., Pandis, S.N., 2007. Sensitivity of PM2.5 to climate in the Eastern US: a modeling case study. Atmos. Chem. Phys. 7 (16), 4295-4309. https:// doi.org/10.5194/acp-7-4295-2007.
- Dockery, D.W., Pope 3rd, C.A., Xu, X., Spengler, J.D., Ware, J.H., Fay, M.E., Ferris Jr., B. G., Speizer, F.E., 1993. An association between air pollution and mortality in six U.S. cities. N. Engl. J. Med. 329 (24), 1753-1759. https://doi.org/10.1056/ nejm199312093292401.
- Emmons, L.K., et al., 2010. Description and evaluation of the model for ozone and related chemical tracers, version 4 (MOZART-4). Geosci. Model Dev. 3 (1), 43-67. https:// doi.org/10.5194/gmd-3-43-2010.
- European Parliament, 2015. Directive 2008/50/EC of the European Parliament and of the Council of 21 May 2008 on ambient air quality and cleaner air for Europe. OJ L 152, 1-44, 11.6.2008. Special edition in Croatian: Chapter 15, V. 029, 169-212. ELI. http://data.europa.eu/eli/dir/2008/50/oj.
- Feng, J., Zhu, J.L., Li, Y., 2016. Influences of El Nino on aerosol concentrations over eastern China. Atmos. Sci. Lett. 17 (7), 422-430. https://doi.org/10.1002/asl.674.
- Feng, J., Li, J.P., Liao, H., Zhu, J.L., 2019. Simulated coordinated impacts of the previous autumn North Atlantic Oscillation (NAO) and winter El Nino on winter aerosol concentrations over eastern China. Atmos. Chem. Phys. 19 (16), 10787-10800. https://doi.org/10.5194/acp-19-10787-2019. " doi:10.5194/acp-19-10787-2019.
- Feng, W., Wang, M., Zhang, Y., Dai, X., Liu, X., Xu, Y., 2020. Intraseasonal variation and future projection of atmospheric diffusion conditions conducive to extreme haze formation over eastern China. Atmos. Ocean. Sci. Lett. 13 (4), 346-355. https://doi. org/10.1080/16742834.2020.1745054.
- Fiore, A.M., Milly, G.P., Hancock, S.E., Quiñones, L., Bowden, J.H., Helstrom, E., Lamarque, J.-F., Schnell, J., West, J.J., Xu, Y., 2022. Characterizing changes in eastern U.S. pollution events in a warming world. J. Geophys. Res. Atmos. 127 (9), e2021JD035985 https://doi.org/10.1029/2021JD035985.
- Gelaro, R., et al., 2017. The modern-era retrospective analysis for research and applications, version 2 (MERRA-2). J. Climate 30 (14), 5419-5454. https://doi.org/ 10.1175/JCLI-D-16-0758.1.
- Gui, K., Che, H.Z., Wang, Y.Q., Wang, H., Zhang, L., Zhao, H.J., Zheng, Y., Sun, T.Z., Zhang, X.Y., 2019. Satellite-derived PM2.5 concentration trends over eastern China from 1998 to 2016: relationships to emissions and meteorological parameters. Environ. Pollut. 247, 1125-1133. https://doi.org/10.1016/j.envpol.2019.01.056.
- He, J.J., et al., 2017. Air pollution characteristics and their relation to meteorological conditions during 2014-2015 in major Chinese cities. Environ. Pollut. 223, 484-496. https://doi.org/10.1016/j.envpol.2017.01.050.
- Hou, X.W., Zhu, B., Kumar, K.R., Lu, W., 2019. Inter-annual variability in fine particulate matter pollution over China during 2013-2018: role of meteorology. Atmos. Environ. 214, 116842 https://doi.org/10.1016/j.atmosenv.2019.116842.
- Hurrell, J.W., et al., 2013. The community earth system model: a framework for collaborative research. Bull. Amer. Meteor. Soc. 94, 1339-1360. https://doi.org/ 10.1175/BAMS-D-12-00121.1.
- Koch, D., Park, J., Del Genio, A., 2003. Clouds and sulfate are anticorrelated: a new diagnostic for global sulfur models. J. Geophys. Res. Atmos. 108 (D24), 4781. https://doi.org/10.1029/2003JD003621.
- Lamarque, J.F., et al., 2010. Historical (1850-2000) gridded anthropogenic and biomass burning emissions of reactive gases and aerosols: methodology and application. Atmos. Chem. Phys. 10 (15), 7017-7039. https://doi.org/10.5194/acp-10-7017- 2010.
- Lee, W.L., Wang, Y.C., Shiu, C.J., Tsai, I.C., Tu, C.Y., Lan, Y.Y., Chen, J.P., Pan, H.L., Hsu, H.H., 2020. Taiwan earth system model version 1: description and evaluation of mean state. Geosci. Model Dev. 13 (9), 3887-3904. https://doi.org/10.5194/gmd- 13-3887-2020.
- Leung, D.M., Tai, A.P.K., Mickley, L.J., Moch, J.M., van Donkelaar, A., Shen, L., Martin, R.V., 2018. Synoptic meteorological modes of variability for fine particulate matter (PM2.5) air quality in major metropolitan regions of China. Atmos. Chem. Phys. 18 (9), 6733-6748. https://doi.org/10.5194/acp-18-6733-2018.
- Liao, H., Chen, W.T., Seinfeld, J.H., 2006. Role of climate change in global predictions of future tropospheric ozone and aerosols. J. Geophys. Res. Atmos. 111, D12304. https://doi.org/10.1029/2005JD006852.
- Liu, X., et al., 2012. Toward a minimal representation of aerosols in climate models: description and evaluation in the community atmosphere model CAM5. Geosci. Model Dev. 5 (3), 709-739. https://doi.org/10.5194/gmd-5-709-2012.
- Liu, Y.K., Liu, J.F., Tao, S., 2013. Interannual variability of summertime aerosol optical depth over East Asia during 2000-2011: a potential influence from El Nino Southern Oscillation. Environ. Res. Lett. 8 (4), 4034. https://doi.org/10.1088/1748-9326/8/ 4/044034.
- Liu, X., Ma, P.L., Wang, H., Tilmes, S., Singh, B., Easter, R.C., Ghan, S.J., Rasch, P.J., 2016. Description and evaluation of a new four-mode version of the modal aerosol module (MAM4) within version 5.3 of the community atmosphere model. Geosci. Model Dev. 9 (2), 505-522. https://doi.org/10.5194/gmd-9-505-2016.
- Liu, Y.S., Zhou, Y., Lu, J.X., 2020. Exploring the relationship between air pollution and meteorological conditions in China under environmental governance. Sci. Rep. 10 (1), 1-11. https://doi.org/10.1038/s41598-020-71338-7. " doi:10.1038/s41598- 020-71338-7.
- Mao, Y.H., Liao, H., Chen, H.S., 2017. Impacts of east Asian summer and winter monsoons on interannual variations of mass concentrations and direct radiative forcing of black carbon over eastern China. Atmos. Chem. Phys. 17 (7), 4799-4816. https://doi.org/10.5194/acp-17-4799-2017.
- Mu, Q., Liao, H., 2014. Simulation of the interannual variations of aerosols in China: role of variations in meteorological parameters. Atmos. Chem. Phys. 14 (18), 9597-9612. https://doi.org/10.5194/acp-14-9597-2014 doi:10.5194/acp-14-9597-2014.
- People's Republic of China Ministry of Ecology and Environment, 2012. Ambient Air Quality Standards, GB 3095-2012. Available through. https://english.mee.gov.cn/ Resources/standards/Air_Environment/quality_standard1/201605/t20160511_337 502.shtml. Pope 3rd, C.A., Dockery, D.W., 2006. Health effects of fine particulate air pollution: lines that connect. J. Air Waste Manag. Assoc. 56 (6), 709-742. https://doi.org/10.1080/ 10473289.2006.10464485.
- Pope 3rd, C.A., Thun, M.J., Namboodiri, M.M., Dockery, D.W., Evans, J.S., Speizer, F.E., Heath Jr., C.W., 1995. Particulate air pollution as a predictor of mortality in a prospective study of U.S. adults. Am. J. Respir. Crit. Care Med. 151 (3 Pt 1), 669-674. https://doi.org/10.1164/ajrccm/151.3_Pt_1.669 (PMID: 7881654).
- Pope 3rd, C.A., Burnett, R.T., Thun, M.J., Calle, E.E., Krewski, D., Ito, K., Thurston, G.D., 2002. Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution. JAMA 287 (9), 1132-1141. https://doi.org/10.1001/ jama.287.9.1132.
- Pui, D.Y.H., Chen, S.-C., Zuo, Z., 2014. PM2.5 in China: measurements, sources, visibility and health effects, and mitigation. Particuology 13, 1-26. https://doi.org/10.1016/ j.partic.2013.11.001.
- Randles, C.A., et al., 2017. The MERRA-2 aerosol reanalysis, 1980 onward. Part I: system description and data assimilation evaluation. J. Climate 30 (17), 6823-6850. https://doi.org/10.1175/JCLI-D-16-0609.1.
- Smith, R., et al., 2010. The parallel ocean program (POP) reference manual: ocean component of the community climate system model (CCSM). Available through. https://opensky.ucar.edu/islandora/object/manuscripts:825.
- Song, C., He, J., Wu, L., Jin, T., Chen, X., Li, R., Ren, P., Zhang, L., Mao, H., 2017. Health burden attributable to ambient PM2.5 in China. Environ. Pollut. 223, 575-586. https://doi.org/10.1016/j.envpol.2017.01.060.
- Tai, A.P.K., Mickley, L.J., Jacob, D.J., 2010. Correlations between fine particulate matter (PM2.5) and meteorological variables in the United States: implications for the sensitivity of PM2.5 to climate change. Atmos. Environ. 44 (32), 3976-3984. https://doi.org/10.1016/j.atmosenv.2010.06.060.
- Tsai, I.-C., Chen, J.-P., Lin, Y.-C., Chou, C.C.K., Chen, W.N., 2015. Numerical investigation of the coagulation mixing between dust and hygroscopic aerosol particles and its impacts. J. Geophys. Res. Atmos. 120 (9), 4213-4233. https://doi. org/10.1002/2014JD022899.
- Tsai, I.-C., Wang, W.-C., Hsu, H.-H., Lee, W.-L., 2016. Aerosol effects on summer monsoon over Asia during 1980s and 1990s. J. Geophys. Res. Atmos. 121, 11,761-711,776. https://doi.org/10.1002/2016jd025388 doi:10.1002/ 2016jd025388.
- United States of Environmental Protection Agency, 2021. National Ambient Air Quality Standards (NAAQS) for PM. Available through. https://www.epa.gov/pm-pollutio n/national-ambient-air-quality-standards-naaqs-pm.
- Wang, B., Wu, R.G., Fu, X.H., 2000. Pacific-east Asian teleconnection: how does ENSO affect east Asian climate? J. Climate 13 (9), 1517-1536. https://doi.org/10.1175/ 1520-0442(2000)013<1517:PEATHD>2.0.CO;2.
- Wang, B., Wu, Z.W., Li, J.P., Liu, J., Chang, C.P., Ding, Y.H., Wu, G.X., 2008. How to measure the strength of the east Asian summer monsoon. J. Climate 21 (17), 4449-4463. https://doi.org/10.1175/2008JCLI2183.1.
- Wang, W.-C., Chen, J.-P., Isaksen, I.S.A., Tsai, I.-C., Noone, K., McGuffie, K., McGuffie, 2012. Climate-chemistry interaction: future tropospheric ozone and aerosol. In: Henderson-Sellers (Ed.), The Future of the World's Climate. World Survey of Climatology series, Elsevier Science, pp. 367-399 (ISBN: 978-0-12-386917-3).
- World Health Organization, 2005. WHO Air Quality Guidelines Global Update 2005: Report on a Working Group Meeting, Bonn, Germany, 18-20 October 2005. World Health Organization. Regional Office for Europe. https://apps.who.int/iris/handle/ 10665/349878.
- World Health Orgnization, 2021. WHO global air quality guidelines: particulate matter (PM2.5 and PM10), ozone, nitrogen dioxide, sulfur dioxide and carbon monoxide, World Health Organization, Geneva. https://apps.who.int/iris/handle/10665/ 345329.
- Wu, X., Xu, Y., Kumar, R., Barth, M., 2019. Separating emission and meteorological drivers ofMid-21st-century air quality changes in IndiaBased on multiyear global- RegionalChemistry-climate simulations. J. Geophys. Res. Atmos. 124 (23), 13420-13438. https://doi.org/10.1029/2019JD030988.
- Xu, Y., Lamarque, J.-F., 2018. Isolating the meteorological impact of 21st century GHG warming on the removal and atmospheric loading of anthropogenic fine particulate matter pollution at global scale. Earth's Future 6 (3), 428-440. https://doi.org/ 10.1002/2017EF000684.
- Yang, Y., Russell, L.M., Lou, S.J., Liao, H., Guo, J.P., Liu, Y., Singh, B., Ghan, S.J., 2017. Dust-wind interactions can intensify aerosol pollution over eastern China. Nat. Commun. 8, 15333. https://doi.org/10.1038/ncomms15333. " doi:10.1038/ ncomms15333.
- Yang, Y., Wang, H., Smith, S.J., Ma, P.L., Rasch, P.J., 2017a. Source attribution of black carbon and its direct radiative forcing in China. Atmos. Chem. Phys. 17 (6), 4319-4336. https://doi.org/10.5194/acp-17-4319-2017.
- Yang, Y., Wang, H., Smith, S.J., Easter, R., Ma, P.L., Qian, Y., Yu, H., Li, C., Rasch, P.J., 2017b. Global source attribution of sulfate concentration and direct and indirect radiative forcing. Atmos. Chem. Phys. 17 (14), 8903-8922. https://doi.org/ 10.5194/acp-17-8903-2017.
- Zhai, S., Jacob, D.J., Wang, X., Shen, L., Li, K., Zhang, Y., Gui, K., Zhao, T., Liao, H., 2019. Fine particulate matter (PM2.5) trends in China, 2013-2018: separating contributions from anthropogenic emissions and meteorology. Atmos. Chem. Phys. 19 (16), 11031-11041. https://doi.org/10.5194/acp-19-11031-2019.
- Zhang, L., Liao, H., Li, J.P., 2010. Impacts of Asian summer monsoon on seasonal and interannual variations of aerosols over eastern China. J. Geophys. Res. Atmos. 115, D00K05. https://doi.org/10.1029/2009JD012299.
- Zhu, J.L., Liao, H., Li, J.P., 2012. Increases in aerosol concentrations over eastern China due to the decadal-scale weakening of the east Asian summer monsoon. Geophys. Res. Lett. 39, L09809. https://doi.org/10.1029/2012GL051428.