Academia.eduAcademia.edu

Outline

Smart Kitchen Automation and Monitoring System using IoT

2025, Article

Abstract

Everyday safety issues in kitchens have become an area of concern because of the attendant increase in kitchen accidents in the domestic and commercial kitchens. Most people usually access and use kitchens for meal preparation which makes them prone to kitchen accidents. However, there are some risks involved in such situations, for instance, the occurrence of a gas cylinder leak. And that is where we come in, how the Internet of things can be used to reduce the risk of gas explosions particularly in the kitchen. In this respect, IoT efforts such as remote monitoring of the entire kitchen will be able to prevent these accidents. In order to test this theory and its results, the research will include the use of both hardware and software. Hardware to be utilized consists of Servo motors, Flame sensors, temperature, humidity, and gas sensors, Arduino UNO, load cell Node MCU, and the like. In software perspective, mobile applications and integrated Node MCU have been applied. The output from our system is SMS. The gas leaks in the kitchen are also a concern since the system can be able to offer surveillance which in the event of any leak, it may cut bluntly the reaction time. In the case of gas leakages either during the day or night, there is a likelihood that someone may unknowingly switch on a source of light, a move that may cause an explosion. The master power supply will immediately kill these lights and save everybody from that with the associated alert. This means that alert can raise an alarm for the time and response of the users. Informing and alerting the user to kitchen appliances, such as Cylinder. The design of this research project aims at highlighting the potential of presenting the IOT based system for communication through SMS which is the repository of the parametric assistance. In a comparison to the existent in the field works, the developed system shows a very high accuracy rate almost 97%.

References (49)

  1. Al-Zubaidi, F. M. A., Lopez-Cardona, J. D., Montero, D. S., & Vazquez, C. (2021). Optically powered Radio-Over- Fiber systems in support of 5G cellular networks and IoT. Journal of Lightwave Technology, 39(13), 4262-4269. https://doi.org/10.1109/jlt.2021.3074193
  2. Anuradha, P., Arabelli, R. R., Rajkumar, K., & Ravichander, J. (2020). Microcontroller based monitoring and controlling of LPG leaks using internet of things. IOP Conference Series Materials Science and Engineering, 981(3), 032021. https://doi.org/10.1088/1757-899x/981/3/032021
  3. Campanella, C. E., De Carlo, M., Cuccovillo, A., De Leonardis, F., & Passaro, V. M. N. (2019). Methane gas photonic sensor based on resonant coupled cavities. Sensors, 19(23), 5171. https://doi.org/10.3390/s19235171
  4. Chaudhary, V., Ashraf, N., Khalid, M., Walvekar, R., Yang, Y., Kaushik, A., & Mishra, Y. K. (2022a). Emergence of MXENE-Polymer Hybrid Nanocomposites as High-Performance Next-Generation chemiresistors for efficient air quality Monitoring. Advanced Functional Materials, 32(33). https://doi.org/10.1002/adfm.202112913
  5. Chaudhary, V., Ashraf, N., Khalid, M., Walvekar, R., Yang, Y., Kaushik, A., & Mishra, Y. K. (2022b). Emergence of MXENE-Polymer Hybrid Nanocomposites as High-Performance Next-Generation chemiresistors for efficient air quality Monitoring. Advanced Functional Materials, 32(33). https://doi.org/10.1002/adfm.202112913
  6. Chawla, S., & Chawla, H. (2023). IoT-Based Digital LPG Gas Cylinder Trolley to Prevent Hazards with Voice- Controlled Features. 2021 5th International Conference on Information Systems and Computer Networks (ISCON), 1-6. https://doi.org/10.1109/iscon57294.2023.10112147
  7. Elahi, H., Munir, K., Eugeni, M., Atek, S., & Gaudenzi, P. (2020). Energy Harvesting towards Self-Powered IoT Devices. Energies, 13(21), 5528. https://doi.org/10.3390/en13215528
  8. Esposito, M., Belli, A., Palma, L., & Pierleoni, P. (2023). Design and implementation of a framework for smart home automation based on cellular IoT, MQTT, and serverless functions. Sensors, 23(9), 4459. https://doi.org/10.3390/s23094459
  9. Gao, D., Arán-Ais, R. M., Jeon, H. S., & Cuenya, B. R. (2019). Rational catalyst and electrolyte design for CO2 electroreduction towards multicarbon products. Nature Catalysis, 2(3), 198-210. https://doi.org/10.1038/s41929-019- 0235-5
  10. Gomes, J. B. A., Rodrigues, J. J. P. C., Rabêlo, R. a. L., Kumar, N., & Kozlov, S. (2019a). IOT-Enabled gas Sensors: Technologies, applications, and opportunities. Journal of Sensor and Actuator Networks, 8(4), 57. https://doi.org/10.3390/jsan8040057
  11. Gomes, J. B. A., Rodrigues, J. J. P. C., Rabêlo, R. a. L., Kumar, N., & Kozlov, S. (2019b). IOT-Enabled gas Sensors: Technologies, applications, and opportunities. Journal of Sensor and Actuator Networks, 8(4), 57. https://doi.org/10.3390/jsan8040057
  12. Subhadip Nandi et al., et al.,
  13. He, C., Liu, S., Zhong, G., Wu, H., Cheng, L., Lin, J., & Huang, Q. (2023). A Non-Contact fall detection method for bathroom application based on MEMS infrared sensors. Micromachines, 14(1), 130. https://doi.org/10.3390/mi14010130
  14. Hoang, M. L. (2023). Smart drone surveillance system based on AI and on IoT communication in case of intrusion and fire accident. Drones, 7(12), 694. https://doi.org/10.3390/drones7120694
  15. Ismaeel, R., Beaton, A., Donko, A., Talataisong, W., Lee, T., Brotin, T., Beresna, M., Mowlem, M., & Brambilla, G. (2019). High Sensitivity All-Fibre Methane Sensor with Gas Permeable Teflon/Cryptophane-A Membrane. IEEE, 1. https://doi.org/10.1109/cleoe-eqec.2019.8873125
  16. Jabbar, W. A., Kian, T. K., Ramli, R. M., Zubir, S. N., Zamrizaman, N. S. M., Balfaqih, M., Shepelev, V., & Alharbi, S. (2019). Design and fabrication of smart home with Internet of things enabled automation system. IEEE Access, 7, 144059-144074. https://doi.org/10.1109/access.2019.2942846
  17. Krishna, K. S., Satish, T., & Mishra, J. (2023). Machine Learning-Based IOT Air Quality and Pollution Detection. International Journal on Recent and Innovation Trends in Computing and Communication, 11(2s), 132-145. https://doi.org/10.17762/ijritcc.v11i2s.6036
  18. Kumari, C. L. (2024). GAS LEVEL DETECTION AND AUTOMATIC BOOKING NOTIFICATION. INTERANTIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT, 08(04), 1-5. https://doi.org/10.55041/ijsrem31092
  19. Lau, N. C., Lim, L. P., Weinstein, E. G., & Bartel, D. P. (2001). An Abundant Class of Tiny RNAs with Probable Regulatory Roles in Caenorhabditis elegans. Science, 294(5543), 858-862. https://doi.org/10.1126/science.1065062
  20. Messan, S., Shahud, A., Anis, A., Kalam, R., Ali, S., & Aslam, M. I. (2022). Air-MIT: Air Quality Monitoring Using Internet of Things. IEEE, 45. https://doi.org/10.3390/engproc2022020045
  21. Mohammed, B. K., Mortatha, M. B., Abdalrada, A. S., & ALRikabi, H. T. S. (2021). A comprehensive system for detection of flammable and toxic gases using IoT. Periodicals of Engineering and Natural Sciences (PEN), 9(2), 702. https://doi.org/10.21533/pen.v9i2.1894
  22. Mondal, B., Goswami, B., Banik, N., & Kundu, R. (2023). AUTOMATION AND MONITORING SMART KITCHEN BASED ON IOT. International Research Journal of Modernization in Engineering Technology and Science. https://doi.org/10.56726/irjmets38617
  23. Munirathinam, D., Sekar, V., Arumugam, A., & Palanisamy, T. R. (2023). GSM based gas leakage detection system using Arduino. AIP Conference Proceedings, 2984, 020061. https://doi.org/10.1063/5.0167313
  24. Nasri, A., Pétrissans, M., Fierro, V., & Celzard, A. (2021). Gas sensing based on organic composite materials: Review of sensor types, progresses and challenges. Materials Science in Semiconductor Processing, 128, 105744. https://doi.org/10.1016/j.mssp.2021.105744
  25. Naveen, P., Teja, K. R., Reddy, K. S., Sam, S. M., Kumar, M. D., & Saravanan, M. (2023). ATMEGA 328-based Gas Leakage Monitoring and Alerting IoT System with SMS Notification. 2022 8th International Conference on Advanced Computing and Communication Systems (ICACCS), 1300-1305. https://doi.org/10.1109/icaccs57279.2023.10112899
  26. Nintarat, L., Sukitianan, T., & Narongkul, S. (2024). Development of Low-Cost Real-Time Optical Fiber Signal Anomaly Detection and Alert System Using IoT Technology. IEEE, 1-4. https://doi.org/10.1109/icocet63343.2024.10730544
  27. Palandurkar, V. R., Mascarenhas, S. J., Nadaf, N. D., & Kunwar, R. A. (2020). SMART KITCHEN SYSTEM USING IOT. International Journal of Engineering Applied Sciences and Technology, 04(11), 378-383. https://doi.org/10.33564/ijeast.2020.v04i11.067
  28. Pan, Y., Ge, X., Fang, C., & Fan, Y. (2020). A Systematic Literature Review of Android Malware Detection using static Analysis. IEEE Access, 8, 116363-116379. https://doi.org/10.1109/access.2020.3002842
  29. Panca, A., Panidi, J., Faber, H., Stathopoulos, S., Anthopoulos, T. D., & Prodromakis, T. (2023). Flexible oxide thin film transistors, memristors, and their integration. Advanced Functional Materials, 33(20). https://doi.org/10.1002/adfm.202213762
  30. Paul, A., Muthukumar, S., & Prasad, S. (2019). Review-Room-Temperature Ionic Liquids for Electrochemical Application with Special Focus on Gas Sensors. Journal of the Electrochemical Society, 167(3), 037511. https://doi.org/10.1149/2.0112003jes
  31. Subhadip Nandi et al., et al.,
  32. Pecunia, V., Occhipinti, L. G., & Hoye, R. L. Z. (2021). Emerging indoor photovoltaic technologies for sustainable internet of things. Advanced Energy Materials, 11(29). https://doi.org/10.1002/aenm.202100698
  33. Raza, W., Ali, F., Raza, N., Luo, Y., Kim, K., Yang, J., Kumar, S., Mehmood, A., & Kwon, E. E. (2018). Recent advancements in supercapacitor technology. Nano Energy, 52, 441-473. https://doi.org/10.1016/j.nanoen.2018.08.013
  34. Sardar, M. R., & Faisal, M. (2019). Methane gas sensor based on microstructured highly sensitive hybrid porous core photonic crystal fiber. Journal of Sensor Technology, 09(01), 12-26. https://doi.org/10.4236/jst.2019.91002
  35. Sarkar, S., Akshatha, K., Saurabh, A., Samanvitha, B., & Sarwar, M. F. (2022). IoT enabled Cold Supply Chain Monitoring System. 2022 IEEE 3rd Global Conference for Advancement in Technology (GCAT), 1-6. https://doi.org/10.1109/gcat55367.2022.9972137
  36. Senthil, G., Suganthi, P., Prabha, R., Madhumathi, M., Prabhu, S., & Sridevi, S. (2023). An Enhanced Smart Intelligent Detecting and Alerting System for Industrial Gas Leakage using IoT in Sensor Network. 2022 4th International Conference on Smart Systems and Inventive Technology (ICSSIT). https://doi.org/10.1109/icssit55814.2023.10060907
  37. Shah, S., Parashar, A., Rai, C., & Pokhariyal, S. (2021). IOT based Smart Gas Leakage Detection and Alert System. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.3866873
  38. Shen, G., Zheng, X., Zhang, Y., & Wang, R. (2019). The designed MEMS methane sensor based on pulse power supply. IOP Conference Series Earth and Environmental Science, 300(4), 042029. https://doi.org/10.1088/1755- 1315/300/4/042029
  39. Suma, V., Shekar, R. R., & Akshay, K. A. (2019). Gas leakage detection based on IOT. 2019 3rd International Conference on Electronics, Communication and Aerospace Technology (ICECA), 1312-1315. https://doi.org/10.1109/iceca.2019.8822055
  40. Sun, Z., Zhu, M., Shan, X., & Lee, C. (2022). Augmented tactile-perception and haptic-feedback rings as human- machine interfaces aiming for immersive interactions. Nature Communications, 13(1). https://doi.org/10.1038/s41467-022-32745-8
  41. Sun, Z., Zhu, M., Zhang, Z., Chen, Z., Shi, Q., Shan, X., Yeow, R. C. H., & Lee, C. (2021). Artificial intelligence of Things (AIOT) enabled virtual shop applications using Self-Powered Sensor enhanced soft robotic Manipulator. Advanced Science, 8(14). https://doi.org/10.1002/advs.202100230
  42. Tang, W., Chen, Z., Song, Z., Wang, C., Wan, Z., Chan, C. L. J., Chen, Z., Ye, W., & Fan, Z. (2022). Microheater integrated nanotube array gas sensor for Parts-Per-Trillion level gas detection and single Sensor-Based gas discrimination. ACS Nano, 16(7), 10968-10978. https://doi.org/10.1021/acsnano.2c03372
  43. Taştan, M., & Gökozan, H. (2019). Real-Time Monitoring of Indoor Air Quality with Internet of Things-Based E- Nose. Applied Sciences, 9(16), 3435. https://doi.org/10.3390/app9163435
  44. Tiu, R. L., Manuel, M. C. E., Acosta, M. E. T., Yap, R. C. P., Arrozal, F. J. N., Cruz, J. C. D., Tud, R. C., & Verdadero, M. S. (2021). Development and application of an Omni-Directional robot for the detection of combustible and toxic gases. 2021 IEEE 13th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment, and Management (HNICEM), 1-6. https://doi.org/10.1109/hnicem54116.2021.9732055
  45. Trafela, Š., Krishnamurthy, A., Soderžnik, K. Ž., Kavčič, U., Karlovits, I., Klopčič, B., Šturm, S., & Žužek, K. (2023). IoT Electrochemical Sensor with Integrated Ni(OH)2-Ni Nanowires for Detecting Formaldehyde in Tap Water. Sensors, 23(10), 4676. https://doi.org/10.3390/s23104676
  46. Uddin, A. (2019). Solar fuels via two-step thermochemical redox cycles for power and fuel production. https://doi.org/10.5821/dissertation-2117-342105
  47. Vinnarasi, A., M, E. R., Jenish, J., & RajT, K. (2021). LPG gas monitoring system using Arduino. International Journal of Innovative Research in Technology, 7(11),314-320. https://www.ijirt.org/master/publishedpaper/IJIRT151002_PAPER.pdf
  48. Yang, Z., Liu, A., Wang, C., Liu, F., He, J., Li, S., Wang, J., You, R., Yan, X., Sun, P., Duan, Y., & Lu, G. (2019). Improvement of gas and humidity sensing properties of organ-like MXene by alkaline treatment. ACS Sensors, 4(5), 1261-1269. https://doi.org/10.1021/acssensors.9b00127
  49. Subhadip Nandi et al., et al.,