Academia.eduAcademia.edu

Outline

Kac boundary conditions of the logarithmic minimal models

2015, Journal of Statistical Mechanics: Theory and Experiment

https://doi.org/10.1088/1742-5468/2015/01/P01018

Abstract

We develop further the implementation and analysis of Kac boundary conditions in the general logarithmic minimal models LM(p, p ′ ) with 1 ≤ p < p ′ and p, p ′ coprime. Specifically, working in a strip geometry, we consider the (r, s) Kac boundary conditions. These boundary conditions are organized into infinitely extended Kac tables labeled by the Kac labels r, s = 1, 2, 3, . . .. They are conjugate to Virasoro Kac representations with conformal dimensions ∆ r,s given by the usual Kac formula. On a finite strip of width N , built from a square lattice, the associated integrable boundary conditions are constructed by acting on the vacuum (1, 1) boundary with an s-type seam of width s -1 columns and an r-type seam of width ρ -1 columns. The r-type seam contains an arbitrary boundary field ξ. While the usual fusion construction of the r-type seam relies on the existence of Wenzl-Jones projectors restricting its application to r ≤ ρ < p ′ , this limitation was recently removed by Pearce, Rasmussen and Villani who further conjectured that the conformal boundary conditions labeled by r are realized, in particular, for ρ = ρ(r) = ⌊ rp ′ p ⌋. In this paper, we confirm this conjecture by performing extensive numerics on the commuting double row transfer matrices and their associated quantum Hamiltonian chains. Letting [x] denote the fractional part, we fix the boundary field to the specialized values ξ = π 2 if [ ρ p ′ ] = 0 and ξ = [ ρp p ′ ] π 2 otherwise. For these boundary conditions, we obtain the Kac conformal weights ∆ r,s by numerically extrapolating the finite-size corrections to the lowest eigenvalue of the quantum Hamiltonians out to sizes N ≤ 32ρs. Additionally, by solving local inversion relations, we obtain general analytic expressions for the boundary free energies allowing for more accurate estimates of the conformal data.

References (50)

  1. G. Moore, N. Seiberg, Classical and quantum conformal field theory, Commun. Math. Phys. 123 (1989) 177-254.
  2. A.A. Belavin, A.M. Polyakov and A.B. Zamolodchikov, Infinite conformal symmetry in two- dimensional quantum field theory, Nucl. Phys. B241 (1984) 333-380; Infinite conformal symmetry of critical fluctuations in two dimensions, J. Stat. Phys. 34 (1984) 763-774.
  3. D.A. Huse, Exact exponents for infinitely many new multicritical points, Phys. Rev. B30 (1984) 3908-3915.
  4. P.J. Forrester, R.J. Baxter, Further exact solutions of the eight-vertex SOS model and generalizations of the Rogers-Ramanujan identities, J. Stat. Phys. 38 (1985) 435-472.
  5. V. Gurarie, Logarithmic operators in conformal field theory, Nucl. Phys. B410 (1993) 535-549, arXiv:hep-th/9303160.
  6. M. Flohr, S. Rouhani (eds.), Proceedings of school and workshop on logarithmic conformal field theory and its applications, Int. J. Mod. Phys. A18 (2003) Vol. 25.
  7. M. Flohr, Bits and pieces in logarithmic conformal field theory, Int. J. Mod. Phys. A18 (2003) 4497-4591, arXiv:hep-th/0111228.
  8. M.R. Gaberdiel, An algebraic approach to logarithmic conformal field theory, Int. J. Mod. Phys. A18 (2003) 4593-4638, arXiv:hep-th/0111260.
  9. J. Rasmussen, Logarithmic limits of minimal models, Nucl. Phys. B701 (2004) 516-528; Jordan cells in logarithmic limits of conformal field theory, Int. J. Mod. Phys. A22 (2007) 67-82.
  10. P.A. Pearce, J. Rasmussen, Coset construction of logarithmic minimal models: branching rules and branching functions, J. Phys. A: Math. Theor. 46 (2013) 355402, arXiv:1305.7304.
  11. P. Goddard, A. Kent, D. Olive, Virasoro algebras and coset space models, Phys. Lett. B152 (1985) 88-92.
  12. P.A. Pearce, J. Rasmussen, J.-B. Zuber, Logarithmic minimal models, J. Stat. Mech. (2006) P11017, arXiv:hep-th/0607232.
  13. R.J. Baxter, Exactly Solved Models in Statistical Mechanics, Academic Press, London (1982).
  14. P.A. Pearce, J. Rasmussen, Solvable critical dense polymers, J. Stat. Mech. (2007) P02015, arXiv:hep-th/0610273.
  15. A. Morin-Duchesne, Y. Saint-Aubin, The Jordan structure of two-dimensional loop models, J. Stat. Mech. (2011) P04007, arXiv:1101.2885.
  16. S. Broadbent, J. Hammersley, Percolation processes I. Crystals and mazes, Proc. Camb. Phil. Soc. 53 (1957) 629;
  17. D. Stauffer and A. Aharony, Introduction to Percolation Theory, Taylor and Francis (1992).
  18. A. Gainutdinov, D. Ridout, I. Runkel (Guest Editors), Special issue on logarithmic conformal field theory, J. Phys. A: Math. Theor. 46 (2013) Number 49.
  19. P.A. Pearce, J. Rasmussen, S. Villani, Infinitely extended Kac table of solvable critical dense polymers, J. Phys. A: Math. Theor. 46 (2013) 175202, arXiv:1210.8301 [math-ph].
  20. R.E. Behrend, P.A. Pearce, A construction of solutions to the IRF reflection equations, J. Phys. A 29 (1996) 7827-7835, hep-th 9512218.
  21. R.E Behrend, P.A. Pearce, D.L. O'Brien, Interaction-round-a-face models with fixed boundary conditions: the ABF fusion hierarchy, J. Stat. Phys. 84 (1996) 1-48, arXiv:hep-th/9507118.
  22. R.E. Behrend, P.A. Pearce, Integrable and conformal boundary conditions for lattice A-D-E and unitary minimal sl(2) models, J. Stat. Phys. 102 (2001) 577-640, hep-th/0006094.
  23. P.P. Kulish, N.Yu. Reshetikhin, E.K. Sklyanin, Yang-Baxter equation and representation theory: I, Lett. Math. Phys. 5 (1981) 393-403.
  24. V.F.R. Jones, Index of subfactors, Inv. Math. 72 (1983) 1-25.
  25. H. Wenzl, Hecke algebras of type A n and subfactors, Inv. Math. 92 (1988) 349-383.
  26. P.A. Pearce, J. Rasmussen, E. Tartaglia, Logarithmic superconformal minimal models, J. Stat. Mech. (2014) P05001, arXiv:1312.6763 [hep-th].
  27. A. Morin-Duchesne, P.A. Pearce, J. Rasmussen, Fusion hierarchies, T -systems and Y -systems of logarithmic minimal models, J. Stat. Mech. (2014) P05012.
  28. H.N.V. Temperley, E.H. Lieb, Relations between the 'percolation' and 'colouring' problem and other graph-theoretical problems associated with regular planar lattices: Some exact results for the 'percolation' problem, Proc. Roy. Soc. A322 (1971) 251-280.
  29. V.F.R. Jones, Planar algebras I, arXiv:math.QA/9909027.
  30. P.A. Pearce, K.A. Seaton, Off-critical logarithmic minimal models, J. Stat. Mech. (2012) P09014, arXiv:1207.0259 [hep-th].
  31. O. Foda, T.A. Welsh, On the combinatorics of Forrester-Baxter models, Progress in Mathematics 191 (2000) 49-103.
  32. M. Jimbo, T. Miwa and M. Okado, Solvable lattice models with broken Z N symmetry and Hecke's indefinite modular forms Nucl. Phys. B275 (1986) 517-545;
  33. E. Date, M. Jimbo, T. Miwa and M. Okado, Fusion of the eight vertex SOS model, Lett. Math. Phys. 12 (1986) 209-215; Automorphic properties of local height probabilities for integrable solid- on-solid models, Phys. Rev. B35 (1987) 2105-2107;
  34. E. Date, M. Jimbo, A. Kuniba, T. Miwa and M. Okado, Exactly solvable SOS models: local height probabilities and theta function identities Nucl. Phys. B290 (1987) 231-273.
  35. R.J. Baxter, The inversion relation method for some two-dimensional exactly solved models in lattice statistics, J. Stat. Phys 28 (1982) 1-41.
  36. D.L. O'Brien, P.A. Pearce, R.E. Behrend, Surface free energies and surface critical behavior of the ABF models with fixed boundaries, Statistical Models, Yang-Baxter Equation and Related Topics, Tianjin, China (1996), cond-mat/9511081;
  37. D.L. O'Brien, P.A. Pearce, Surface free energies, interfacial tensions and correlation lengths of the ABF models, J. Phys. A: Math. Gen. 30 (1997) 2353-2366, arXiv:cond-mat/9607033.
  38. H.W.J. Blöte, J.L. Cardy, M.P. Nightingale, Conformal invariance, the central charge, and universal finite-size amplitudes at criticality, Phys. Rev. Lett. 56 (1986) 742-745.
  39. I. Affleck, Universal term in the free energy at a critical point and the conformal anomaly, Phys. Rev. Lett. 56 (1986) 746-748.
  40. D. Kim, P.A. Pearce, Scaling dimensions and conformal anomaly in anisotropic lattice spin models, J. Phys. A: Math. Gen. 20 (1987) L451-L456.
  41. Wolfram Research, Mathematica Edition: Version 8.0, Wolfram Research Inc., Champaign, Illinois (2010).
  42. W.E. Arnoldi, The principle of minimized iterations in the solution of the matrix eigenvalue problem, Quarterly of Applied Mathematics 9 (1951) 17-29.
  43. J.-M. Vanden Broeck, L.W. Schwartz, A one-parameter family of sequence transformations, SIAM J. on Math. Anal. 10 (1979) 658-666;
  44. C.J. Hamer, M.N. Barber, Finite-lattice extrapolations for Z 3 and Z 5 models, J. Phys. A: Math. Gen. 14 (1981) 2009-2025.
  45. A. Klümper, P.A. Pearce, Conformal weights of RSOS lattice models and their fusion hierarchies, Physica A 183 (1992) 304-350.
  46. V.V. Bazhanov, S.L. Lukyanov, A.B. Zamolodchikov, Quantum field theories in finite volume: Excited state energies, Nucl. Phys. B489 (1997) 487-531.
  47. J.L. Jacobsen, H. Saleur, Conformal boundary loop models, Nucl. Phys. B788 (2008) 137-166, arXiv:math-ph/0611078.
  48. K. Gustafson, T. Abe, (Victor) Gustave Robin: 1855-1897, The Mathematical Intelligencer 20 (1998) 47-53;
  49. The third boundary condition -was it Robin's? The Mathematical Intelligencer 20 (1998) 63-71.
  50. P.A. Pearce, J.Rasmussen, I.Y. Tipunin, Critical dense polymers with Robin boundary conditions, half-integer Kac labels and Z 4 fermions, arXiv:1405.0550 (2014).