Kac boundary conditions of the logarithmic minimal models
2015, Journal of Statistical Mechanics: Theory and Experiment
https://doi.org/10.1088/1742-5468/2015/01/P01018Abstract
We develop further the implementation and analysis of Kac boundary conditions in the general logarithmic minimal models LM(p, p ′ ) with 1 ≤ p < p ′ and p, p ′ coprime. Specifically, working in a strip geometry, we consider the (r, s) Kac boundary conditions. These boundary conditions are organized into infinitely extended Kac tables labeled by the Kac labels r, s = 1, 2, 3, . . .. They are conjugate to Virasoro Kac representations with conformal dimensions ∆ r,s given by the usual Kac formula. On a finite strip of width N , built from a square lattice, the associated integrable boundary conditions are constructed by acting on the vacuum (1, 1) boundary with an s-type seam of width s -1 columns and an r-type seam of width ρ -1 columns. The r-type seam contains an arbitrary boundary field ξ. While the usual fusion construction of the r-type seam relies on the existence of Wenzl-Jones projectors restricting its application to r ≤ ρ < p ′ , this limitation was recently removed by Pearce, Rasmussen and Villani who further conjectured that the conformal boundary conditions labeled by r are realized, in particular, for ρ = ρ(r) = ⌊ rp ′ p ⌋. In this paper, we confirm this conjecture by performing extensive numerics on the commuting double row transfer matrices and their associated quantum Hamiltonian chains. Letting [x] denote the fractional part, we fix the boundary field to the specialized values ξ = π 2 if [ ρ p ′ ] = 0 and ξ = [ ρp p ′ ] π 2 otherwise. For these boundary conditions, we obtain the Kac conformal weights ∆ r,s by numerically extrapolating the finite-size corrections to the lowest eigenvalue of the quantum Hamiltonians out to sizes N ≤ 32ρs. Additionally, by solving local inversion relations, we obtain general analytic expressions for the boundary free energies allowing for more accurate estimates of the conformal data.
References (50)
- G. Moore, N. Seiberg, Classical and quantum conformal field theory, Commun. Math. Phys. 123 (1989) 177-254.
- A.A. Belavin, A.M. Polyakov and A.B. Zamolodchikov, Infinite conformal symmetry in two- dimensional quantum field theory, Nucl. Phys. B241 (1984) 333-380; Infinite conformal symmetry of critical fluctuations in two dimensions, J. Stat. Phys. 34 (1984) 763-774.
- D.A. Huse, Exact exponents for infinitely many new multicritical points, Phys. Rev. B30 (1984) 3908-3915.
- P.J. Forrester, R.J. Baxter, Further exact solutions of the eight-vertex SOS model and generalizations of the Rogers-Ramanujan identities, J. Stat. Phys. 38 (1985) 435-472.
- V. Gurarie, Logarithmic operators in conformal field theory, Nucl. Phys. B410 (1993) 535-549, arXiv:hep-th/9303160.
- M. Flohr, S. Rouhani (eds.), Proceedings of school and workshop on logarithmic conformal field theory and its applications, Int. J. Mod. Phys. A18 (2003) Vol. 25.
- M. Flohr, Bits and pieces in logarithmic conformal field theory, Int. J. Mod. Phys. A18 (2003) 4497-4591, arXiv:hep-th/0111228.
- M.R. Gaberdiel, An algebraic approach to logarithmic conformal field theory, Int. J. Mod. Phys. A18 (2003) 4593-4638, arXiv:hep-th/0111260.
- J. Rasmussen, Logarithmic limits of minimal models, Nucl. Phys. B701 (2004) 516-528; Jordan cells in logarithmic limits of conformal field theory, Int. J. Mod. Phys. A22 (2007) 67-82.
- P.A. Pearce, J. Rasmussen, Coset construction of logarithmic minimal models: branching rules and branching functions, J. Phys. A: Math. Theor. 46 (2013) 355402, arXiv:1305.7304.
- P. Goddard, A. Kent, D. Olive, Virasoro algebras and coset space models, Phys. Lett. B152 (1985) 88-92.
- P.A. Pearce, J. Rasmussen, J.-B. Zuber, Logarithmic minimal models, J. Stat. Mech. (2006) P11017, arXiv:hep-th/0607232.
- R.J. Baxter, Exactly Solved Models in Statistical Mechanics, Academic Press, London (1982).
- P.A. Pearce, J. Rasmussen, Solvable critical dense polymers, J. Stat. Mech. (2007) P02015, arXiv:hep-th/0610273.
- A. Morin-Duchesne, Y. Saint-Aubin, The Jordan structure of two-dimensional loop models, J. Stat. Mech. (2011) P04007, arXiv:1101.2885.
- S. Broadbent, J. Hammersley, Percolation processes I. Crystals and mazes, Proc. Camb. Phil. Soc. 53 (1957) 629;
- D. Stauffer and A. Aharony, Introduction to Percolation Theory, Taylor and Francis (1992).
- A. Gainutdinov, D. Ridout, I. Runkel (Guest Editors), Special issue on logarithmic conformal field theory, J. Phys. A: Math. Theor. 46 (2013) Number 49.
- P.A. Pearce, J. Rasmussen, S. Villani, Infinitely extended Kac table of solvable critical dense polymers, J. Phys. A: Math. Theor. 46 (2013) 175202, arXiv:1210.8301 [math-ph].
- R.E. Behrend, P.A. Pearce, A construction of solutions to the IRF reflection equations, J. Phys. A 29 (1996) 7827-7835, hep-th 9512218.
- R.E Behrend, P.A. Pearce, D.L. O'Brien, Interaction-round-a-face models with fixed boundary conditions: the ABF fusion hierarchy, J. Stat. Phys. 84 (1996) 1-48, arXiv:hep-th/9507118.
- R.E. Behrend, P.A. Pearce, Integrable and conformal boundary conditions for lattice A-D-E and unitary minimal sl(2) models, J. Stat. Phys. 102 (2001) 577-640, hep-th/0006094.
- P.P. Kulish, N.Yu. Reshetikhin, E.K. Sklyanin, Yang-Baxter equation and representation theory: I, Lett. Math. Phys. 5 (1981) 393-403.
- V.F.R. Jones, Index of subfactors, Inv. Math. 72 (1983) 1-25.
- H. Wenzl, Hecke algebras of type A n and subfactors, Inv. Math. 92 (1988) 349-383.
- P.A. Pearce, J. Rasmussen, E. Tartaglia, Logarithmic superconformal minimal models, J. Stat. Mech. (2014) P05001, arXiv:1312.6763 [hep-th].
- A. Morin-Duchesne, P.A. Pearce, J. Rasmussen, Fusion hierarchies, T -systems and Y -systems of logarithmic minimal models, J. Stat. Mech. (2014) P05012.
- H.N.V. Temperley, E.H. Lieb, Relations between the 'percolation' and 'colouring' problem and other graph-theoretical problems associated with regular planar lattices: Some exact results for the 'percolation' problem, Proc. Roy. Soc. A322 (1971) 251-280.
- V.F.R. Jones, Planar algebras I, arXiv:math.QA/9909027.
- P.A. Pearce, K.A. Seaton, Off-critical logarithmic minimal models, J. Stat. Mech. (2012) P09014, arXiv:1207.0259 [hep-th].
- O. Foda, T.A. Welsh, On the combinatorics of Forrester-Baxter models, Progress in Mathematics 191 (2000) 49-103.
- M. Jimbo, T. Miwa and M. Okado, Solvable lattice models with broken Z N symmetry and Hecke's indefinite modular forms Nucl. Phys. B275 (1986) 517-545;
- E. Date, M. Jimbo, T. Miwa and M. Okado, Fusion of the eight vertex SOS model, Lett. Math. Phys. 12 (1986) 209-215; Automorphic properties of local height probabilities for integrable solid- on-solid models, Phys. Rev. B35 (1987) 2105-2107;
- E. Date, M. Jimbo, A. Kuniba, T. Miwa and M. Okado, Exactly solvable SOS models: local height probabilities and theta function identities Nucl. Phys. B290 (1987) 231-273.
- R.J. Baxter, The inversion relation method for some two-dimensional exactly solved models in lattice statistics, J. Stat. Phys 28 (1982) 1-41.
- D.L. O'Brien, P.A. Pearce, R.E. Behrend, Surface free energies and surface critical behavior of the ABF models with fixed boundaries, Statistical Models, Yang-Baxter Equation and Related Topics, Tianjin, China (1996), cond-mat/9511081;
- D.L. O'Brien, P.A. Pearce, Surface free energies, interfacial tensions and correlation lengths of the ABF models, J. Phys. A: Math. Gen. 30 (1997) 2353-2366, arXiv:cond-mat/9607033.
- H.W.J. Blöte, J.L. Cardy, M.P. Nightingale, Conformal invariance, the central charge, and universal finite-size amplitudes at criticality, Phys. Rev. Lett. 56 (1986) 742-745.
- I. Affleck, Universal term in the free energy at a critical point and the conformal anomaly, Phys. Rev. Lett. 56 (1986) 746-748.
- D. Kim, P.A. Pearce, Scaling dimensions and conformal anomaly in anisotropic lattice spin models, J. Phys. A: Math. Gen. 20 (1987) L451-L456.
- Wolfram Research, Mathematica Edition: Version 8.0, Wolfram Research Inc., Champaign, Illinois (2010).
- W.E. Arnoldi, The principle of minimized iterations in the solution of the matrix eigenvalue problem, Quarterly of Applied Mathematics 9 (1951) 17-29.
- J.-M. Vanden Broeck, L.W. Schwartz, A one-parameter family of sequence transformations, SIAM J. on Math. Anal. 10 (1979) 658-666;
- C.J. Hamer, M.N. Barber, Finite-lattice extrapolations for Z 3 and Z 5 models, J. Phys. A: Math. Gen. 14 (1981) 2009-2025.
- A. Klümper, P.A. Pearce, Conformal weights of RSOS lattice models and their fusion hierarchies, Physica A 183 (1992) 304-350.
- V.V. Bazhanov, S.L. Lukyanov, A.B. Zamolodchikov, Quantum field theories in finite volume: Excited state energies, Nucl. Phys. B489 (1997) 487-531.
- J.L. Jacobsen, H. Saleur, Conformal boundary loop models, Nucl. Phys. B788 (2008) 137-166, arXiv:math-ph/0611078.
- K. Gustafson, T. Abe, (Victor) Gustave Robin: 1855-1897, The Mathematical Intelligencer 20 (1998) 47-53;
- The third boundary condition -was it Robin's? The Mathematical Intelligencer 20 (1998) 63-71.
- P.A. Pearce, J.Rasmussen, I.Y. Tipunin, Critical dense polymers with Robin boundary conditions, half-integer Kac labels and Z 4 fermions, arXiv:1405.0550 (2014).