Academia.eduAcademia.edu

Outline

Many-body lattice wave functions from conformal blocks

2017, Physical Review B

https://doi.org/10.1103/PHYSREVB.95.085146

Abstract

We introduce a general framework to construct many-body lattice wavefunctions starting from the conformal blocks (CBs) of rational conformal field theories (RCFTs). We discuss the different ways of encoding the physical degrees of freedom of the lattice system using both the internal symmetries of the theory and the fusion channels of the CBs. We illustrate this construction both by revisiting the known Haldane-Shastry model and by providing a novel implementation for the Ising RCFT. In the latter case, we find a connection to the Ising transverse field (ITF) spin chain via the Kramers-Wannier duality and the Temperley-Lieb-Jones algebra. We also find evidence that the ground state of the finite-size critical ITF Hamiltonian corresponds exactly to the wavefunction obtained from CBs of spin fields.

References (23)

  1. A.M. Tsvelik, Quantum Field Theory in Condensed Matter Physics, Cambridge University Press, 1995.
  2. C. Gómez, M. Ruiz-Altaba, G. Sierra, Quantum groups in two- dimensional physics, Cambridge University Press, 1996.
  3. P. di Francesco, P. Mathieu, D. Sénéchal, Conformal field the- ory. Springer, 1997.
  4. A. O. Gogolin, A. A. Nersesyan, A. M. Tsvelik, Bosonization Approach to Strongly Correlated Systems, Cambridge Univer- sity Press, 1999.
  5. G. Mussardo, Statistical Field Theory, Oxford University Press, 2009.
  6. R. B. Laughlin, Phys. Rev. Lett. 50, 1395 (1983).
  7. G. Moore, N. Read, Nucl. Phys. B 360, 362 (1991).
  8. J. I. Cirac, G. Sierra, Phys. Rev. B 81, 104431 (2010).
  9. A. E. B. Nielsen, J. I. Cirac, G. Sierra, J. Stat. Mech. P11014 (2011). H.-H. Tu, A. E. B. Nielsen, J. I. Cirac, G. Sierra, New J. Phys. 16, 033025 (2014). I. Glasser, J. I. Cirac, G. Sierra, A. E. B. Nielsen, Nucl. Phys. B886, 63 (2014). H.-H. Tu, A. E. B. Nielsen, G. Sierra, Nucl. Phys. B886, 328 (2014). R. Bondesan, T. Quella, Nucl. Phys. B886, 483 (2014). B. Her- werth, G. Sierra, Hong-Hao Tu, A. E. B. Nielsen, Phys. Rev. B 91, 235121 (2015). H.-H. Tu, G. Sierra, Phys. Rev. B 92, 041119(R) (2015). I. Glasser, J. I. Cirac, G. Sierra, A. E. B. Nielsen, New J. Phys. 17, 082001 (2015).
  10. A. E. B. Nielsen, J. I. Cirac, G. Sierra, Phys. Rev. Lett. 108, 257206 (2012). A. E. B. Nielsen, G. Sierra, J. I. Cirac, Na- ture Communications 4, 2864 (2013). B. Herwerth, G. Sierra, H.-H. Tu, J. I. Cirac, A. E. B. Nielsen, Phys. Rev. B 92, 245111 (2015). I. Glasser, J.I. Cirac, G. Sierra, A. E. B. Nielsen, arXiv:1609.02435 (2016).
  11. M. P. Zaletel, R. S. K. Mong, Phys. Rev. B 86, 245305 (2012).
  12. B. Estienne, Z. Papić, N. Regnault, B. A. Bernevig, Phys. Rev. B 87, 161112 (2013).
  13. A. Belavin, A. Polyakov, A. Zamolodchikov, Nucl.Phys. B241, 33 (1984).
  14. G. Sierra, T. Nishino, Nucl. Phys. B495, 505 (1997).
  15. C. Nayak et al., Rev. Mod. Phys. 80, 1083 (2008).
  16. A. Feiguin et al., Phys. Rev. Let. 98, 160409 (2007).
  17. R.N.C. Pfeifer, P. Corboz, O. Buerschaper, M. Aguado, M. Troyer, G. Vidal, Phys. Rev. B 82, 115126 (2010).
  18. G. Moore, N. Seiberg, Comm. Math. Phys. 123, 177 (1989).
  19. G. Moore, N. Seiberg, "Lectures on RCFT." in Physics, Geom- etry and Topology, Springer, 1990.
  20. C. Nayak, F. Wilczek, Nucl. Phys. B 479, 529 (1996).
  21. E. Ardonne, G. Sierra, J. Phys. A 43, 505402, 2010.
  22. D. Aasen, R.S. Mong, P. Fendley, arXiv:1601.07185 (2016).
  23. D. Levy, Phys. Rev. Lett. 67, 1971 (1991).