Logarithmic minimal models
2006, Journal of Statistical Mechanics: Theory and Experiment
https://doi.org/10.1088/1742-5468/2006/11/P11017Abstract
Working in the dense loop representation, we use the planar Temperley-Lieb algebra to build integrable lattice models called logarithmic minimal models LM(p, p ′ ). Specifically, we construct Yang-Baxter integrable Temperley-Lieb models on the strip acting on link states and consider their associated Hamiltonian limits. These models and their associated representations of the Temperley-Lieb algebra are inherently non-local and not (timereversal) symmetric. We argue that, in the continuum scaling limit, they yield logarithmic conformal field theories with central charges c = 1 -6(p-p ′ ) 2 pp ′ where p, p ′ = 1, 2, . . . are coprime. The first few members of the principal series LM(m, m + 1) are critical dense polymers (m = 1, c = -2), critical percolation (m = 2, c = 0) and logarithmic Ising model (m = 3, c = 1/2). For the principal series, we find an infinite family of integrable and conformal boundary conditions organized in an extended Kac table with conformal weights ∆ r,s = ((m+1)r-ms) 2 -1 4m(m+1) , r, s = 1, 2, . . .. The associated conformal partition functions are given in terms of Virasoro characters of highest-weight representations. Individually, these characters decompose into a finite number of characters of irreducible representations. We show with examples how indecomposable representations arise from fusion.
References (78)
- V. Gurarie, hep-th/9303160, Nucl. Phys. B410, 535 (1993).
- F. Rohsiepe, On reducible but indecomposable representations of the Virasoro algebra, hep-th/9611160 (1996).
- M. Flohr, hep-th/9605151, Int. J. Mod. Phys. A12, 1943-1958 (1997); Null vectors in logarithmic conformal field theory, hep-th/0009137 (2000);
- M. Flohr, hep-th/0111228, Int. J. Mod. Phys. A18, 4497-4592 (2003).
- M.R. Gaberdiel and H.G. Kausch, hep-th/9604026, Nucl. Phys. B477, 293-318 (1996); hep-th/9807091, Nucl. Phys. B538, 631 (1999).
- M.R. Gaberdiel, hep-th/0111260, Int. J. Mod. Phys. A18, 4593-4638 (2003).
- S. Moghimi-Araghi and S. Rouhani, hep-th/0002142, Lett. Math. Phys. 53, 49-57 (2000);
- I.I. Kogan and J.F. Wheater, hep-th/0003184, Phys. Lett. B486, 353 (2000);
- S. Kawai and J.F. Wheater, hep-th/0103197, Phys. Lett. B508, 203 (2001);
- A. Bredthauer and M. Flohr, hep-th/0204154, Nucl. Phys. B639, 450-470 (2002);
- S. Kawai, hep-th/0204169, Int. J. Mod. Phys. A18, 4655-4684 (2003).
- V. Pasquier and H. Saleur, Nucl. Phys. B330, 523 (1990).
- M. Marcu, J. Math. Phys. 21, 1277-1283; 1284-1292 (1980).
- L. Rozansky and H. Saleur, Nucl. Phys. B376, 461 (1992); hep-th/9203069, Nucl. Phys. B389, 365 (1993).
- Z. Maassarani and D. Serban, hep-th/9605062, Nucl. Phys. B489, 603-625 (1997).
- H. Saleur, hep-th/9111007, Nucl. Phys. B382, 486 (1992); hep-th/9111008, Nucl. Phys. B382, 532 (1992).
- H.G. Kausch, Curiosities at c = -2, hep-th/9510149 (1995).
- J. Kondev and J.B. Marston, Supersymmetry and Localization in the Quantum Hall Effect, cond-mat/9612223 (1996).
- E.V. Ivashkevich, cond-mat/9801183, J. Phys A32, 1691 (1999).
- N. Read and H. Saleur, hep-th/0106124, Nucl. Phys. B613, 409 (2001).
- H. Saleur, J. Phys. A20, 455-470 (1987).
- B. Duplantier, J. Phys. A19, L1009-1014 (1986);
- H. Saleur and B. Duplantier, Phys. Rev. Lett. 58, 2325 (1987).
- J. Cardy, Logarithmic correlations in quenched random magnets and polymers, cond-mat/9911024 (1999).
- V. Gurarie and A.W.W. Ludwig, cond-mat/9911392, J.Phys. A35, L377-384 (2002).
- H.G. Kausch, Phys. Lett. B259, 448-455 (1991).
- M. Flohr, hep-th/9509166, Int. J. Mod. Phys. A11, 4147-4172 (1996).
- J. Fjelstad, J. Fuchs, S. Hwang, A.M. Semikhatov and I.Yu. Tipunin, Nucl. Phys. B633, 379-413 (2002).
- P. Calabrese, M. Caselle, A. Celi, A. Pelissetto and E. Vicari, hep-th/0005254, J. Phys. A33, 8155-8170 (2000);
- L.-P. Arguin and Y. Saint-Aubin, hep-th/0109138, Phys. Lett. B541, 384-389 (2002).
- J. Rasmussen, hep-th/0405257, Nucl. Phys. B701, 516-528 (2004); Jordan cells in loga- rithmic limits of conformal field theory, hep-th/0406110 (2004).
- H. Eberle and M. Flohr, Virasoro representations and fusion for general augmented minimal models, hep-th/0604097 (2006).
- H.N.V. Temperley and E.H. Lieb, Proc. Roy. Soc. (London) A322, 251 (1971).
- V.F.R. Jones, Planar algebras I, math.QA/9909027 (1999).
- G.E. Andrews, R.J. Baxter and P.J. Forrester, J. Stat. Phys. 35, 193-266 (1984);
- P.J. For- rester and R.J. Baxter, J. Stat. Phys. 38, 435-472 (1985).
- I.G. Enting, J. Phys. A13, 3713-3722 (1980);
- B. Derrida, J. Phys. A14, L5 (1981);
- H. Blöte, M.P. Nightingale and B. Derrida, J. Phys. A14, L45 (1981);
- H. Blöte and M.P. Nightingale, Physica A112, 405 (1982);
- M.P. Nightingale and H. Blöte, J. Phys. A16, L657 (1983);
- H. Blöte and B. Nienhuis, J. Phys. A22, 1415-1438 (1989).
- P.A. Pearce, V. Rittenberg and J. de Gier, cond-mat/0108051 (2001);
- P.A. Pearce, V. Rit- tenberg, J. de Gier and B. Nienhuis, J. Phys. A35, L661-668 (2002).
- B. Nienhuis, Phys. Rev. Lett. 49, 1062-1065 (1982);
- J. Stat. Phys. 34, 731-761 (1984).
- S-C. Chang and R. Schrock, cond-mat/0404524, Physica A347, 314-352 (2005);
- J.L. Ja- cobsen and J. Salas, Transfer matrices and partition-function zeros for antiferromagnetic Potts models, cond-mat/0407444 (2004);
- J.-F. Richard and J.L. Jacobsen, Character de- composition of Potts model partition functions I. Cyclic geometry and II Toroidal geometry, math-ph/0605015, 0605016 (2006).
- J. Cardy, Nucl. Phys. B240, 514 (1984).
- H. Saleur and M. Bauer, Nucl. Phys. B320, 591 (1989).
- J. Cardy, Nucl. Phys. B324, 581 (1989).
- R.E. Behrend and P.A. Pearce, hep-th/0006094, J. Stat. Phys. 102, 577-640 (2001).
- W. Nahm, hep-th/9402039, Int. J. Mod. Phys. B8, 3693 (1994).
- E. Melzer, Int. J. Mod. Phys. A9, 1115 (1994).
- A. Berkovich, Nucl. Phys. B431, 315 (1994).
- R.J. Baxter, Exactly Solved Models in Statistical Mechanics, Academic Press, London (1982).
- P.P. Martin, Potts models and related problems in statistical mechanics, Series on Advances in Statistical Mechanics, Volume 5, World Scientific, Singapore (1991).
- L. Kauffman, Topology 26, 395 (1987).
- F.M. Goodman and H. Wenzl, Pacific Journal of Mathematics 161, 307-334 (1993).
- E.K. Sklyanin, J. Phys. A21, 2375-2389 (1988).
- R.E. Behrend, P.A. Pearce and D.L. O'Brien, hep-th/9507118, J. Stat. Phys. 84, 1-48 (1996).
- P.P. Kulish, J. Phys. A36, L489-L493 (2003).
- C.N. Yang and C.P. Yang, Phys. Rev. 150, 321; 327 (1966).
- F.C. Alcaraz, M.N. Barber, M.T. Batchelor, R.J. Baxter and G.R.W. Quispel, J. Phys. A20, 6397-6409 (1987).
- R.J. Baxter, J. Stat. Phys. 28, 1 (1982).
- D.L. O'Brien, P.A. Pearce and R.E. Behrend, cond-mat/9511081, J. Phys. A30, 2353-2366 (1997).
- R. Nepomechie and P.A. Pearce, Boundary S matrices of unitary minimal models, in prepa- ration (2006).
- J.M. van den Broeck and L.W. Schwartz, Siam J. Math. Anal. 10, 639 (1979).
- H.W.J. Blöte, J.L. Cardy, M.P. Nightingale, Phys. Rev. Lett. 56, 742-745 (1986).
- I. Affleck, Phys. Rev. Lett. 56, 746-748 (1986).
- D.L. O'Brien, P.A. Pearce and S.O. Warnaar, Physica A228, 63-77 (1996).
- P.A. Pearce and J. Rasmussen, Solvable critical dense polymers, hep-th/0610273; Physical combinatorics of critical dense polymers, in preparation (2006).
- A.V. Razumov and Yu G. Stroganov, cond-mat/0012141, J. Phys. A34, 3185 (2001).
- M. Flohr, hep-th/9509166, Int. J. Mod. Phys. A11, 4147 (1996);
- M.R. Gaberdiel and H.G. Kausch, hep-th/9606050, Phys. Lett. B386, 131-137 (1996);
- B.L. Feigin, A.M. Gain- utdinov, A.M. Semikhatov and I.Yu. Tipunin, Logarithmic extensions of minimal mod- els: characters and modular transformations, hep-th/0606196 (2006); Kazhdan-Lusztig dual quantum group for logarithmic extensions of Virasoro minimal models, math.QA/0606506 (2006) and further references therein.
- B.L. Feigin and D.B. Fuchs, Funct. Anal. Appl. 17, 241 (1983).