Academia.eduAcademia.edu

Outline

Mitochondrial Maintenance in Skeletal Muscle

2025, Cold Spring Harbor Perspectives in Biology

https://doi.org/10.1101/CSHPERSPECT.A041514

Abstract

Skeletal muscle is one of the tissues with the highest range of variability in metabolic rate, which, to a large extent, is critically dependent on tightly controlled and fine-tuned mitochondrial activity. Besides energy production, other mitochondrial processes, including calcium buffering, generation of heat, redox and reactive oxygen species homeostasis, intermediate metabolism, substrate biosynthesis, and anaplerosis, are essential for proper muscle contractility and performance. It is thus not surprising that adequate mitochondrial function is ensured by a plethora of mechanisms, aimed at balancing mitochondrial biogenesis, proteostasis, dynamics, and degradation. The fine-tuning of such maintenance mechanisms ranges from proper folding or degradation of individual proteins to the elimination of whole organelles, and in extremis, apoptosis of cells. In this review, the present knowledge on these processes in the context of skeletal muscle biology is summarized. Moreover, existing gaps in knowledge are highlighted, alluding to potential future studies and therapeutic implications.

References (117)

  1. Ahola S, Langer T, MacVicar T. 2019. Mitochondrial prote- olysis and metabolic control. Cold Spring Harb Perspect Biol 11: a033936. doi:10.1101/cshperspect.a033936
  2. Anand R, Wai T, Baker MJ, Kladt N, Schauss AC, Rugarli E, Langer T. 2014. The i-AAA protease YME1L and OMA1 cleave OPA1 to balance mitochondrial fusion and fission. J Cell Biol 204: 919-929. doi:10.1083/jcb.201308006
  3. Baker N, Patel J, Khacho M. 2019. Linking mitochondrial dynamics, cristae remodeling and supercomplex forma- tion: how mitochondrial structure can regulate bioener- getics. Mitochondrion 49: 259-268. doi:10.1016/j.mito .2019.06.003
  4. Bhaskaran S, Pharaoh G, Ranjit R, Murphy A, Matsuzaki S, Nair BC, Forbes B, Gispert S, Auburger G, Humphries KM, et al. 2018. Loss of mitochondrial protease ClpP protects mice from diet-induced obesity and insulin re- sistance. EMBO Rep 19: e45009. doi:10.15252/embr .201745009
  5. Bomba-Warczak E, Edassery SL, Hark TJ, Savas JN. 2021. Long-lived mitochondrial cristae proteins in mouse heart and brain. J Cell Biol 220: e202005193. doi:10.1083/jcb .202005193
  6. Bota DA, Van Remmen H, Davies KJ. 2002. Modulation of Lon protease activity and aconitase turnover during aging and oxidative stress. FEBS Lett 532: 103-106. doi:10 .1016/S0014-5793(02)03638-4
  7. Botella J, Schytz CT, Pehrson TF, Hokken R, Laugesen S, Aagaard P, Suetta C, Christensen B, Ørtenblad N, Nielsen J. 2023. Increased mitochondrial surface area and cristae density in the skeletal muscle of strength athletes. J Physiol 601: 2899-2915. doi:10.1113/JP284394
  8. Chan DC. 2012. Fusion and fission: interlinked processes critical for mitochondrial health. Annu Rev Genet 46: 265-287. doi:10.1146/annurev-genet-110410-132529
  9. Chan NC, Salazar AM, Pham AH, Sweredoski MJ, Kolawa NJ, Graham RL, Hess S, Chan DC. 2011. Broad activation of the ubiquitin-proteasome system by Parkin is critical for mitophagy. Hum Mol Genet 20: 1726-1737. doi:10 .1093/hmg/ddr048
  10. Cipolat S, Rudka T, Hartmann D, Costa V, Serneels L, Craes- saerts K, Metzger K, Frezza C, Annaert W, D'Adamio L, et al. 2006. Mitochondrial rhomboid PARL regulates cyto- chrome c release during apoptosis via OPA1-dependent cristae remodeling. Cell 126: 163-175. doi:10.1016/j.cell .2006.06.021
  11. Civitarese AE, MacLean PS, Carling S, Kerr-Bayles L, Mc- Millan RP, Pierce A, Becker TC, Moro C, Finlayson J, Lefort N, et al. 2010. Regulation of skeletal muscle oxida- tive capacity and insulin signaling by the mitochondrial rhomboid protease PARL. Cell Metab 11: 412-426. doi:10 .1016/j.cmet.2010.04.004
  12. Cogliati S, Frezza C, Soriano ME, Varanita T, Quintana- Cabrera R, Corrado M, Cipolat S, Costa V, Casarin A, Gomes LC, et al. 2013. Mitochondrial cristae shape de- termines respiratory chain supercomplexes assembly and respiratory efficiency. Cell 155: 160-171. doi:10.1016/j .cell.2013.08.032
  13. Cohen S, Nathan JA, Goldberg AL. 2015. Muscle wasting in disease: molecular mechanisms and promising therapies. Nat Rev Drug Discov 14: 58-74. doi:10.1038/nrd4467
  14. Custer SK, Neumann M, Lu H, Wright AC, Taylor JP. 2010. Transgenic mice expressing mutant forms VCP/p97 re- capitulate the full spectrum of IBMPFD including degen- eration in muscle, brain and bone. Hum Mol Genet 19: 1741-1755. doi:10.1093/hmg/ddq050
  15. Deepa SS, Bhaskaran S, Ranjit R, Qaisar R, Nair BC, Liu Y, Walsh ME, Fok WC, Van Remmen H. 2016. Down-reg- ulation of the mitochondrial matrix peptidase ClpP in muscle cells causes mitochondrial dysfunction and de- creases cell proliferation. Free Radic Biol Med 91: 281- 292. doi:10.1016/j.freeradbiomed.2015.12.021
  16. De Mario A, Gherardi G, Rizzuto R, Mammucari C. 2021. Skeletal muscle mitochondria in health and disease. Cell Calcium 94: 102357. doi:10.1016/j.ceca.2021.102357
  17. Deshwal S, Fiedler KU, Langer T. 2020. Mitochondrial pro- teases: multifaceted regulators of mitochondrial plasticity. Annu Rev Biochem 89: 501-528. doi:10.1146/annurev- biochem-062917-012739
  18. de Smalen LM, Börsch A, Leuchtmann AB, Gill JF, Ritz D, Zavolan M, Handschin C. 2023. Impaired age-associated mitochondrial translation is mitigated by exercise and PGC-1α. Proc Natl Acad Sci 120: e2302360120. doi:10 .1073/pnas.2302360120
  19. Dong LF, Rohlena J, Zobalova R, Nahacka Z, Rodriguez AM, Berridge MV, Neuzil J. 2023. Mitochondria on the move: horizontal mitochondrial transfer in disease and health. J Cell Biol 222: e202211044. doi:10.1083/jcb.202211044
  20. Du J, Wang X, Miereles C, Bailey JL, Debigare R, Zheng B, Price SR, Mitch WE. 2004. Activation of caspase-3 is an initial step triggering accelerated muscle proteolysis in catabolic conditions. J Clin Invest 113: 115-123. doi:10 .1172/JCI18330
  21. Dupont-Versteegden EE. 2006. Apoptosis in skeletal muscle and its relevance to atrophy. World J Gastroenterol 12: 7463-7466. doi:10.3748/wjg.v12.i46.7463
  22. Egan B, Sharples AP. 2023. Molecular responses to acute exercise and their relevance for adaptations in skeletal muscle to exercise training. Physiol Rev 103: 2057-2170. doi:10.1152/physrev.00054.2021
  23. Eisner V, Lenaers G, Hajnóczky G. 2014. Mitochondrial fusion is frequent in skeletal muscle and supports excita- tion-contraction coupling. J Cell Biol 205: 179-195. doi:10.1083/jcb.201312066
  24. Fornasiero EF, Mandad S, Wildhagen H, Alevra M, Rammner B, Keihani S, Opazo F, Urban I, Ischebeck T, Sakib MS, et al. 2018. Precisely measured protein lifetimes in the mouse brain reveal differences across tissues and subcellular fractions. Nat Commun 9: 4230. doi:10.1038/ s41467-018-06519-0
  25. Frezza C, Cipolat S, Martins de Brito O, Micaroni M, Bez- noussenko GV, Rudka T, Bartoli D, Polishuck RS, Danial NN, De Strooper B, et al. 2006. OPA1 controls apoptotic cristae remodeling independently from mitochondrial fu- sion. Cell 126: 177-189. doi:10.1016/j.cell.2006.06.025
  26. Furuya N, Ikeda S, Sato S, Soma S, Ezaki J, Trejo JAO, Takeda-Ezaki M, Fujimura T, Arikawa-Hirasawa E, Mitochondrial Maintenance in Skeletal Muscle
  27. Advanced Online Article. Cite this article as Cold Spring Harb Perspect Biol doi: 10.1101/cshperspect.a041514
  28. Tada N, et al. 2014. PARK2/Parkin-mediated mitochon- drial clearance contributes to proteasome activation dur- ing slow-twitch muscle atrophy via NFE2L1 nuclear translocation. Autophagy 10: 631-641. doi:10.4161/auto .27785
  29. Gibson BW. 2005. The human mitochondrial proteome: oxidative stress, protein modifications and oxidative phosphorylation. Int J Biochem Cell Biol 37: 927-934. doi:10.1016/j.biocel.2004.11.013
  30. Glancy B, Hartnell LM, Combs CA, Femnou A, Sun J, Mur- phy E, Subramaniam S, Balaban RS. 2017. Power grid protection of the muscle mitochondrial reticulum. Cell Rep 19: 487-496. doi:10.1016/j.celrep.2017.03.063
  31. Greggio C, Jha P, Kulkarni SS, Lagarrigue S, Broskey NT, Boutant M, Wang X, Conde Alonso S, Ofori E, Auwerx J, et al. 2017. Enhanced respiratory chain supercomplex formation in response to exercise in human skeletal mus- cle. Cell Metab 25: 301-311. doi:10.1016/j.cmet.2016.11 .004
  32. Guo Q, Xu Z, Zhou D, Fu T, Wang W, Sun W, Xiao L, Liu L, Ding C, Yin Y, et al. 2022. Mitochondrial proteostasis stress in muscle drives a long-range protective response to alleviate dietary obesity independently of ATF4. Sci Adv 8: eabo0340. doi:10.1126/sciadv.abo0340
  33. Harper CS, White AJ, Lackner LL. 2020. The multifunctional nature of mitochondrial contact site proteins. Curr Opin Cell Biol 65: 58-65. doi:10.1016/j.ceb.2020.02.010
  34. He K, Shi X, Zhang X, Dang S, Ma X, Liu F, Xu M, Lv Z, Han D, Fang X, et al. 2011. Long-distance intercellular con- nectivity between cardiomyocytes and cardiofibroblasts mediated by membrane nanotubes. Cardiovasc Res 92: 39-47. doi:10.1093/cvr/cvr189
  35. He B, Yu H, Liu S, Wan H, Fu S, Liu S, Yang J, Zhang Z, Huang H, Li Q, et al. 2022. Mitochondrial cristae archi- tecture protects against mtDNA release and inflamma- tion. Cell Rep 41: 111774. doi:10.1016/j.celrep.2022 .111774
  36. Hock MB, Kralli A. 2009. Transcriptional control of mito- chondrial biogenesis and function. Annu Rev Physiol 71: 177-203. doi:10.1146/annurev.physiol.010908.163119
  37. Hood DA, Tryon LD, Carter HN, Kim Y, Chen CC. 2016. Unravelling the mechanisms regulating muscle mito- chondrial biogenesis. Biochem J 473: 2295-2314. doi:10 .1042/BCJ20160009
  38. Huang X, Sun L, Ji S, Zhao T, Zhang W, Xu J, Zhang J, Wang Y, Wang X, Franzini-Armstrong C, et al. 2013. Kissing and nanotunneling mediate intermitochondrial commu- nication in the heart. Proc Natl Acad Sci 110: 2846-2851. doi:10.1073/pnas.1300741110
  39. Huertas JR, Ruiz-Ojeda FJ, Plaza-Díaz J, Nordsborg NB, Martín-Albo J, Rueda-Robles A, Casuso RA. 2019. Hu- man muscular mitochondrial fusion in athletes during exercise. FASEB J 33: 12087-12098. doi:10.1096/fj.2019 00365RR
  40. Ikeda K, Shiba S, Horie-Inoue K, Shimokata K, Inoue S. 2013. A stabilizing factor for mitochondrial respiratory supercomplex assembly regulates energy metabolism in muscle. Nat Commun 4: 2147. doi:10.1038/ncomms3147
  41. Jannig PR, Dumesic PA, Spiegelman BM, Ruas JL. 2022. Snapshot: regulation and biology of PGC-1α. Cell 185: 1444-1444.e1. doi:10.1016/j.cell.2022.03.027
  42. Johnson AE, Shu H, Hauswirth AG, Tong A, Davis GW. 2015. VCP-dependent muscle degeneration is linked to defects in a dynamic tubular lysosomal network in vivo. eLife 4: e07366. doi:10.7554/eLife.0736
  43. Joseph AM, Ljubicic V, Adhihetty PJ, Hood DA. 2010. Bio- genesis of the mitochondrial Tom40 channel in skeletal muscle from aged animals and its adaptability to chronic contractile activity. Am J Physiol Cell Physiol 298: C1308- C1314. doi:10.1152/ajpcell.00644.2008
  44. Joseph AM, Adhihetty PJ, Buford TW, Wohlgemuth SE, Lees HA, Nguyen LM, Aranda JM, Sandesara BD, Pahor M, Manini TM, et al. 2012. The impact of aging on mi- tochondrial function and biogenesis pathways in skeletal muscle of sedentary high-and low-functioning elderly individuals. Aging Cell 11: 801-809. doi:10.1111/j.1474- 9726.2012.00844.x Killackey SA, Bi Y, Soares F, Hammi I, Winsor NJ, Abdul- Sater AA, Philpott DJ, Arnoult D, Girardin SE. 2022. Mitochondrial protein import stress regulates the LC3 lipidation step of mitophagy through NLRX1 and RRBP1. Mol Cell 82: 2815-2831.e5. doi:10.1016/j.molcel .2022.06.004
  45. Kravic B, Harbauer AB, Romanello V, Simeone L, Vögtle FN, Kaiser T, Straubinger M, Huraskin D, Böttcher M, Cerqua C, et al. 2018. In mammalian skeletal muscle, phosphor- ylation of TOMM22 by protein kinase CSNK2/CK2 con- trols mitophagy. Autophagy 14: 311-335. doi:10.1080/ 15548627.2017.1403716
  46. Krishna S, Arrojo EDR, Capitanio JS, Ramachandra R, Ellis- man M, Hetzer MW. 2021. Identification of long-lived proteins in the mitochondria reveals increased stability of the electron transport chain. Dev Cell 56: 2952-2965. e9. doi:10.1016/j.devcel.2021.10.008
  47. Kupr B, Handschin C. 2015. Complex coordination of cell plasticity by a PGC-1α-controlled transcriptional net- work in skeletal muscle. Front Physiol 6: 325. doi:10 .3389/fphys.2015.00325
  48. Lackner LL. 2019. The expanding and unexpected functions of mitochondria contact sites. Trends Cell Biol 29: 580- 590. doi:10.1016/j.tcb.2019.02.009
  49. Lavorato M, Iyer VR, Dewight W, Cupo RR, Debattisti V, Gomez L, De la Fuente S, Zhao YT, Valdivia HH, Haj- nóczky G, et al. 2017. Increased mitochondrial nanotun- neling activity, induced by calcium imbalance, affects in- termitochondrial matrix exchanges. Proc Natl Acad Sci 114: E849-E858. doi:10.1073/pnas.1617788113
  50. Leeuwenburgh C, Gurley CM, Strotman BA, Dupont-Ver- steegden EE. 2005. Age-related differences in apoptosis with disuse atrophy in soleus muscle. Am J Physiol Regul Integr Comp Physiol 288: R1288-R1296. doi:10.1152/aj pregu.00576.2004
  51. Levytskyy RM, Viana MP, Khalimonchuk O. 2018. Protease OMA1 modulates mitochondrial metabolism and cristae structure through interaction with MICOS complex. FA- SEB J 32: 543-546. doi:10.1096/fasebj.2018.32.1_supple ment.543.6
  52. Lima T, Li TY, Mottis A, Auwerx J. 2022. Pleiotropic effects of mitochondria in aging. Nat Aging 2: 199-213. doi:10 .1038/s43587-022-00191-2
  53. Lin J, Handschin C, Spiegelman BM. 2005. Metabolic con- trol through the PGC-1 family of transcription coactiva- tors. Cell Metab 1: 361-370. doi:10.1016/j.cmet.2005.05 .004 Liu X, Weaver D, Shirihai O, Hajnóczky G. 2009. Mitochon- drial "kiss-and-run": interplay between mitochondrial motility and fusion-fission dynamics. EMBO J 28: 3074-3089. doi:10.1038/emboj.2009.255
  54. Lu X, Gong Y, Hu W, Mao Y, Wang T, Sun Z, Su X, Fu G, Wang Y, Lai D. 2022. Ultrastructural and proteomic pro- filing of mitochondria-associated endoplasmic reticulum membranes reveal aging signatures in striated muscle. Cell Death Dis 13: 296. doi:10.1038/s41419-022-04746-4
  55. Marzetti E, Hwang JC, Lees HA, Wohlgemuth SE, Dupont- Versteegden EE, Carter CS, Bernabei R, Leeuwenburgh C. 2010. Mitochondrial death effectors: relevance to sarco- penia and disuse muscle atrophy. Biochim Biophys Acta 1800: 235-244. doi:10.1016/j.bbagen.2009.05.007
  56. Melber A, Haynes CM. 2018. UPR mt regulation and output: a stress response mediated by mitochondrial-nuclear communication. Cell Res 28: 281-295. doi:10.1038/cr .2018.16
  57. Mesbah Moosavi ZS, Hood DA. 2017. The unfolded protein response in relation to mitochondrial biogenesis in skel- etal muscle cells. Am J Physiol Cell Physiol 312: C583- C594. doi:10.1152/ajpcell.00320.2016
  58. Miller MJ, Marcotte GR, Basisty N, Wehrfritz C, Ryan ZC, Strub MD, McKeen AT, Stern JI, Nath KA, Rasmussen BB, et al. 2023. The transcription regulator ATF4 is a mediator of skeletal muscle aging. Geroscience 45: 2525-2543. doi:10.1007/s11357-023-00772-y
  59. Mishra P, Varuzhanyan G, Pham AH, Chan DC. 2015. Mi- tochondrial dynamics is a distinguishing feature of skel- etal muscle fiber types and regulates organellar compart- mentalization. Cell Metab 22: 1033-1044. doi:10.1016/j .cmet.2015.09.027
  60. Moehle EA, Shen K, Dillin A. 2019. Mitochondrial proteo- stasis in the context of cellular and organismal health and aging. J Biol Chem 294: 5396-5407. doi:10.1074/jbc .TM117.000893
  61. Monzel AS, Enríquez JA, Picard M. 2023. Multifaceted mi- tochondria: moving mitochondrial science beyond func- tion and dysfunction. Nat Metab 5: 546-562. doi:10.1038/ s42255-023-00783-1
  62. Muñoz VR, Botezelli JD, Gaspar RC, da Rocha AL, Vieira RFL, Crisol BM, Braga RR, Severino MB, Nakandakari S, Antunes GC, et al. 2023. Effects of short-term endurance and strength exercise in the molecular regulation of skel- etal muscle in hyperinsulinemic and hyperglycemic Slc2a4 +/-mice. Cell Mol Life Sci 80: 122. doi:10.1007/ s00018-023-04771-2
  63. Narendra DP, Jin SM, Tanaka A, Suen DF, Gautier CA, Shen J, Cookson MR, Youle RJ. 2010. PINK1 is selectively sta- bilized on impaired mitochondria to activate Parkin. PLoS Biol 8: e1000298. doi:10.1371/journal.pbio.1000298
  64. Neupane N, Rajendran J, Kvist J, Harjuhaahto S, Hu B, Kinnunen V, Yang Y, Nieminen AI, Tyynismaa H. 2022. Inter-organellar and systemic responses to impaired mitochondrial matrix protein import in skeletal muscle. Commun Biol 5: 1060. doi:10.1038/s42003-022-04034-z
  65. Nielsen J, Gejl KD, Hey-Mogensen M, Holmberg HC, Suetta C, Krustrup P, Elemans CPH, Ørtenblad N. 2017. Plas- ticity in mitochondrial cristae density allows metabolic capacity modulation in human skeletal muscle. J Physiol 595: 2839-2847. doi:10.1113/JP273040
  66. Noone J, O'Gorman DJ, Kenny HC. 2022. OPA1 regulation of mitochondrial dynamics in skeletal and cardiac mus- cle. Trends Endocrinol Metab 33: 710-721. doi:10.1016/j .tem.2022.07.003
  67. Peralta S, Goffart S, Williams SL, Diaz F, Garcia S, Nissanka N, Area-Gomez E, Pohjoismäki J, Moraes CT. 2018. ATAD3 controls mitochondrial cristae structure in mouse muscle, influencing mtDNA replication and cho- lesterol levels. J Cell Sci 131: jcs217075. doi:10.1242/jcs .217075
  68. Pérez-Pérez R, Lobo-Jarne T, Milenkovic D, Mourier A, Bratic A, García-Bartolomé A, Fernández-Vizarra E, Cadenas S, Delmiro A, García-Consuegra I, et al. 2016. COX7A2L is a mitochondrial complex III binding protein that stabilizes the III2+IV supercomplex without affecting respirasome formation. Cell Rep 16: 2387-2398. doi:10 .1016/j.celrep.2016.07.081
  69. Pernas L, Scorrano L. 2016. Mito-morphosis: mitochondrial fusion, fission, and cristae remodeling as key mediators of cellular function. Annu Rev Physiol 78: 505-531. doi:10 .1146/annurev-physiol-021115-105011
  70. Picard M, Gentil BJ, McManus MJ, White K, St Louis K, Gartside SE, Wallace DC, Turnbull DM. 2013a. Acute exercise remodels mitochondrial membrane interactions in mouse skeletal muscle. J Appl Physiol (1985) 115: 1562- 1571. doi:10.1152/japplphysiol.00819.2013
  71. Picard M, White K, Turnbull DM. 2013b. Mitochondrial morphology, topology, and membrane interactions in skeletal muscle: a quantitative three-dimensional electron microscopy study. J Appl Physiol (1985) 114: 161-171. doi:10.1152/japplphysiol.01096.2012
  72. Picard M, McManus MJ, Csordás G, Várnai P, Dorn GW II, Williams D, Hajnóczky G, Wallace DC. 2015. Trans-mi- tochondrial coordination of cristae at regulated mem- brane junctions. Nat Commun 6: 6259. doi:10.1038/ ncomms7259
  73. Picca A, Guerra F, Calvani R, Romano R, Coelho-Junior HJ, Bucci C, Leeuwenburgh C, Marzetti E. 2023. Mitochon- drial-derived vesicles in skeletal muscle remodeling and adaptation. Semin Cell Dev Biol 143: 37-45. doi:10.1016/j .semcdb.2022.03.023
  74. Piccirillo R, Goldberg AL. 2012. The p97/VCP ATPase is critical in muscle atrophy and the accelerated degradation of muscle proteins. EMBO J 31: 3334-3350. doi:10.1038/ emboj.2012.178
  75. Plant PJ, Bain JR, Correa JE, Woo M, Batt J. 2009. Absence of caspase-3 protects against denervation-induced skeletal muscle atrophy. J Appl Physiol (1985) 107: 224-234. doi:10.1152/japplphysiol.90932.2008
  76. Popov LD. 2020. Mitochondrial biogenesis: an update. J Cell Mol Med 24: 4892-4899. doi:10.1111/jcmm.15194
  77. Powers SK, Wiggs MP, Duarte JA, Zergeroglu AM, Demirel HA. 2012. Mitochondrial signaling contributes to disuse muscle atrophy. Am J Physiol Endocrinol Metab 303: E31-E39. doi:10.1152/ajpendo.00609.2011
  78. Price JC, Guan S, Burlingame A, Prusiner SB, Ghaemma- ghami S. 2010. Analysis of proteome dynamics in the mouse brain. Proc Natl Acad Sci 107: 14508-14513. doi:10.1073/pnas.1006551107
  79. Mitochondrial Maintenance in Skeletal Muscle
  80. Advanced Online Article. Cite this article as Cold Spring Harb Perspect Biol doi: 10.1101/cshperspect.a041514
  81. Quirós PM, Langer T, López-Otín C. 2015. New roles for mitochondrial proteases in health, ageing and disease. Nat Rev Mol Cell Biol 16: 345-359. doi:10.1038/nrm3984
  82. Richards BJ, Slavin M, Oliveira AN, Sanfrancesco VC, Hood DA. 2023. Mitochondrial protein import and UPR mt in skeletal muscle remodeling and adaptation. Semin Cell Dev Biol 143: 28-36. doi:10.1016/j.semcdb.2022.01.002
  83. Romanello V, Sandri M. 2023. Implications of mitochondri- al fusion and fission in skeletal muscle mass and health. Semin Cell Dev Biol 143: 46-53. doi:10.1016/j.semcdb .2022.02.011
  84. Russell AP, Foletta VC, Snow RJ, Wadley GD. 2014. Skeletal muscle mitochondria: a major player in exercise, health and disease. Biochim Biophys Acta 1840: 1276-1284. doi:10.1016/j.bbagen.2013.11.016
  85. San-Millán I. 2023. The key role of mitochondrial function in health and disease. Antioxidants (Basel) 12: 782. doi:10 .3390/antiox1204078
  86. Seiferling D, Szczepanowska K, Becker C, Senft K, Hermans S, Maiti P, König T, Kukat A, Trifunovic A. 2016. Loss of CLPP alleviates mitochondrial cardiomyopathy without affecting the mammalian UPR mt . EMBO Rep 17: 953- 964. doi:10.15252/embr.201642077
  87. Shen J, Zhang JH, Xiao H, Wu JM, He KM, Lv ZZ, Li ZJ, Xu M, Zhang YY. 2018. Mitochondria are transported along microtubules in membrane nanotubes to rescue dis- tressed cardiomyocytes from apoptosis. Cell Death Dis 9: 81. doi:10.1038/s41419-017-0145-x
  88. Shi P, Ren X, Meng J, Kang C, Wu Y, Rong Y, Zhao S, Jiang Z, Liang L, He W, et al. 2022. Mechanical instability gener- ated by Myosin 19 contributes to mitochondria cristae architecture and OXPHOS. Nat Commun 13: 2673. doi:10.1038/s41467-022-30431-3
  89. Singh K, Hood DA. 2011. Effect of denervation-induced muscle disuse on mitochondrial protein import. Am J Physiol Cell Physiol 300: C138-C145. doi:10.1152/ajp cell.00181.2010
  90. Siu PM, Alway SE. 2005. Mitochondria-associated apoptotic signalling in denervated rat skeletal muscle. J Physiol 565: 309-323. doi:10.1113/jphysiol.2004.081083
  91. Siu PM, Pistilli EE, Alway SE. 2005. Apoptotic responses to hindlimb suspension in gastrocnemius muscles from young adult and aged rats. Am J Physiol Regul Integr Comp Physiol 289: R1015-R1026. doi:10.1152/ajpregu .00198.2005
  92. Slavin MB, Kumari R, Hood DA. 2022. ATF5 is a regulator of exercise-induced mitochondrial quality control in skeletal muscle. Mol Metab 66: 101623. doi:10.1016/j.molmet .2022.101623
  93. Soto I, Couvillion M, Hansen KG, McShane E, Moran JC, Barrientos A, Churchman LS. 2022. Balanced mitochon- drial and cytosolic translatomes underlie the biogenesis of human respiratory complexes. Genome Biol 23: 170. doi:10.1186/s13059-022-02732-9
  94. Stephan T, Brüser C, Deckers M, Steyer AM, Balzarotti F, Barbot M, Behr TS, Heim G, Hübner W, Ilgen P, et al. 2020. MICOS assembly controls mitochondrial inner membrane remodeling and crista junction redistribution to mediate cristae formation. EMBO J 39: e104105. doi:10 .15252/embj.2019104105
  95. Stiburek L, Cesnekova J, Kostkova O, Fornuskova D, Vinsova K, Wenchich L, Houstek J, Zeman J. 2012. YME1L con- trols the accumulation of respiratory chain subunits and is required for apoptotic resistance, cristae morphogenesis, and cell proliferation. Mol Biol Cell 23: 1010-1023. doi:10 .1091/mbc.e11-08-0674
  96. Sun J, Lo HTJ, Fan L, Yiu TL, Shakoor A, Li G, Lee WYW, Sun D. 2022. High-efficiency quantitative control of mi- tochondrial transfer based on droplet microfluidics and its application on muscle regeneration. Sci Adv 8: eabp9245. doi:10.1126/sciadv.abp9245
  97. Takahashi M, Hood DA. 1996. Protein import into subsar- colemmal and intermyofibrillar skeletal muscle mito- chondria. Differential import regulation in distinct sub- cellular regions. J Biol Chem 271: 27285-27291. doi:10 .1074/jbc.271.44.27285
  98. Takahashi M, Chesley A, Freyssenet D, Hood DA. 1998. Contractile activity-induced adaptations in the mito- chondrial protein import system. Am J Physiol 274: C1380-C1387. doi:10.1152/ajpcell.1998.274.5.C1380
  99. Tavi P, Korhonen T, Hänninen SL, Bruton JD, Lööf S, Simon A, Westerblad H. 2010. Myogenic skeletal muscle satellite cells communicate by tunnelling nanotubes. J Cell Physiol 223: 376-383. doi:10.1002/jcp.22044
  100. Tubbs E, Chanon S, Robert M, Bendridi N, Bidaux G, Chau- vin MA, Ji-Cao J, Durand C, Gauvrit-Ramette D, Vidal H, et al. 2018. Disruption of mitochondria-associated endo- plasmic reticulum membrane (MAM) integrity contrib- utes to muscle insulin resistance in mice and humans. Diabetes 67: 636-650. doi:10.2337/db17-0316
  101. Vallabhaneni KC, Haller H, Dumler I. 2012. Vascular smooth muscle cells initiate proliferation of mesenchymal stem cells by mitochondrial transfer via tunneling nano- tubes. Stem Cells Dev 21: 3104-3113. doi:10.1089/scd .2011.0691
  102. Villena JA. 2015. New insights into PGC-1 coactivators: re- defining their role in the regulation of mitochondrial function and beyond. FEBS J 282: 647-672. doi:10 .1111/febs.13175
  103. Vincent AE, Ng YS, White K, Davey T, Mannella C, Falkous G, Feeney C, Schaefer AM, McFarland R, Gorman GS, et al. 2016. The spectrum of mitochondrial ultrastructural defects in mitochondrial myopathy. Sci Rep 6: 30610. doi:10.1038/srep30610
  104. Vincent AE, Turnbull DM, Eisner V, Hajnóczky G, Picard M. 2017. Mitochondrial nanotunnels. Trends Cell Biol 27: 787-799. doi:10.1016/j.tcb.2017.08.009
  105. Vincent AE, White K, Davey T, Philips J, Ogden RT, Lawless C, Warren C, Hall MG, Ng YS, Falkous G, et al. 2019. Quantitative 3D mapping of the human skeletal muscle mitochondrial network. Cell Rep 26: 996-1009.e4. doi:10 .1016/j.celrep.2019.01.010
  106. Vue Z, Garza-Lopez E, Neikirk K, Katti P, Vang L, Beasley H, Shao J, Marshall AG, Crabtree A, Murphy AC et al. 2023. 3D reconstruction of murine mitochondria reveals changes in structure during aging linked to the MICOS complex. Aging Cell 22: e14009.
  107. Wang XH, Zhang L, Mitch WE, LeDoux JM, Hu J, Du J. 2010. Caspase-3 cleaves specific 19 S proteasome subunits in skeletal muscle stimulating proteasome activity. J Biol Chem 285: 21249-21257. doi:10.1074/jbc.M109.041707
  108. Wang XH, Mitch WE, Price SR. 2022. Pathophysiological mechanisms leading to muscle loss in chronic kidney disease. Nat Rev Nephrol 18: 138-152. doi:10.1038/ s41581-021-00498-0
  109. Wiedemann N, Pfanner N. 2017. Mitochondrial machineries for protein import and assembly. Annu Rev Biochem 86: 685-714. doi:10.1146/annurev-biochem-060815-014352
  110. Wu H, Kanatous SB, Thurmond FA, Gallardo T, Isotani E, Bassel-Duby R, Williams RS. 2002. Regulation of mito- chondrial biogenesis in skeletal muscle by CaMK. Science 296: 349-352. doi:10.1126/science.1071163
  111. Wu J, Ruas JL, Estall JL, Rasbach KA, Choi JH, Ye L, Boström P, Tyra HM, Crawford RW, Campbell KP, et al. 2011. The unfolded protein response mediates adaptation to exer- cise in skeletal muscle through a PGC-1α/ATF6α com- plex. Cell Metab 13: 160-169. doi:10.1016/j.cmet.2011.01 .003
  112. Xu Z, Fu T, Guo Q, Zhou D, Sun W, Zhou Z, Chen X, Zhang J, Liu L, Xiao L, et al. 2022. Disuse-associated loss of the protease LONP1 in muscle impairs mitochondrial func- tion and causes reduced skeletal muscle mass and strength. Nat Commun 13: 894. doi:10.1038/s41467- 022-28557-5
  113. Yoshii SR, Kishi C, Ishihara N, Mizushima N. 2011. Parkin mediates proteasome-dependent protein degradation and rupture of the outer mitochondrial membrane. J Biol Chem 286: 19630-19640. doi:10.1074/jbc.M110.209338
  114. Zhang Y, Uguccioni G, Ljubicic V, Irrcher I, Iqbal S, Singh K, Ding S, Hood DA. 2014. Multiple signaling pathways regulate contractile activity-mediated PGC-1α gene ex- pression and activity in skeletal muscle cells. Physiol Rep 2: e12008. doi:10.14814/phy2.12008
  115. Zhou Z, Fan Y, Zong R, Tan K. 2022. The mitochondrial unfolded protein response: a multitasking giant in the fight against human diseases. Ageing Res Rev 81: 101702. doi:10.1016/j.arr.2022.101702
  116. Mitochondrial Maintenance in Skeletal Muscle
  117. Advanced Online Article. Cite this article as Cold Spring Harb Perspect Biol doi: 10.1101/cshperspect.a041514