Papers by Christoph Handschin

Molecular Metabolism, 2025
Objectives: Endurance training is known to elicit numerous changes in skeletal muscle to enhanc... more Objectives: Endurance training is known to elicit numerous changes in skeletal muscle to enhance performance and function. Many of these adaptations are controlled by the modulation of transcriptional programs in myonuclei. While previous studies have explored alterations in DNA methylation and histone modifications in response to exercise, the specific changes in chromatin restructuring and accessibility, a prerequisite for transcription, are still poorly understood.
Methods: A multi-omics analysis was performed: ATAC-sequencing was used to map chromatin accessibility in myonuclei isolated from endurance-trained and untrained mice at multiple time points (0 h, 6 h, and 72 h) post-exercise. Gene expression was assessed via RNA-sequencing, and motif activity analysis identified regulatory factors involved in exercise-induced chromatin remodeling and transcriptomic response.
Results: Endurance training amplified rapid chromatin closing immediately after exercise, with trained muscle exhibiting a more pronounced loss of chromatin accessibility at 0 h and 6 h post-exercise compared to untrained muscle. These chromatin accessibility changes persisted longer in trained muscle, with significant retention until 72 h post-exercise. Immediate early transcription factors, such as Fos and Jun, showed a training state-dependent shift in activation dynamics. Similarly, specific modulation of genes involved in metabolism, insulin response and angiogenesis was observed.
Conclusions: Endurance training triggers rapid and persistent chromatin remodeling in muscle, contributing to the transcriptional response to exercise. Our findings suggest that training induces long-lasting epigenetic changes, potentially underpinning muscle memory and improved physiological resilience. These new insights into the molecular mechanisms of muscle adaptation help to understand the training response, and might become relevant in disease prevention.

Physiological Reviews, 2025
Aging is the strongest risk factor for many (chronic) diseases, frailty, morbidity, and mortality... more Aging is the strongest risk factor for many (chronic) diseases, frailty, morbidity, and mortality. At the moment, the molecular underpinnings of aging are still only poorly understood and, accordingly, pharmacological interventions that directly target aging elusive. The molecular biomarkers of aging exhibit a large variability, with very few attempts at validation in humans. Physiological biomarkers of aging, centered on functional, anthropometric, and morphological aspects, are well established in large human populations, with very high predictive value for disease risks, frailty, morbidity, and mortality. The physiological biomarkers, however, are somewhat underappreciated, even though they could be used in young and old healthy and clinical populations right now. Lifestyle, behavioral, and environmental factors have a significant effect on human health and mortality, whereas many pharmacological and interventional approaches found in preclinical models still await human translation. These factors with proven benefits should be encouraged and promoted on the individual and societal levels.
NPJ Aging, 2025
Biomarkers of aging are indispensable for testing interventions. While promising, the recent focu... more Biomarkers of aging are indispensable for testing interventions. While promising, the recent focus on molecular aspects should not detract from the functional parameters for which excellent correlation with mortality, and ample clinical human data exist.

Life Science Alliance, 2025
Dysferlin is a transmembrane protein that plays a prominent role in membrane repair of damaged mu... more Dysferlin is a transmembrane protein that plays a prominent role in membrane repair of damaged muscle fibers. Accordingly, mutations in the dysferlin gene cause progressive muscular dystrophies, collectively referred to as dysferlinopathies for which no effective treatment exists. Unexpectedly, experimental approaches that successfully restore membrane repair fail to prevent a dystrophic phenotype, suggesting that additional, hitherto unknown dysferlindependent functions contribute to the development of the pathology. Our experiments revealed an altered metabolic phenotype in dysferlin-deficient muscles, characterized by (1) mitochondrial abnormalities and elevated death signaling and (2) increased glucose uptake, reduced glycolytic protein levels, and pronounced glycogen accumulation. Strikingly, elevating mitochondrial volume density and muscle glycogen accelerates disease progression; whereas, improvement of mitochondrial function and recruitment of muscle glycogen with exercise ameliorated functional parameters in a mouse model of dysferlinopathy. Collectively, our results not only shed light on a metabolic function of dysferlin but also imply new therapeutic avenues aimed at promoting mitochondrial function and normalizing muscle glycogen to ameliorate dysferlinopathies, complementing efforts that target membrane repair.

Free Radial Biology and Medicine, 2025
Exercise training involves repeated exposure to progressively increasing metabolic, thermal, mech... more Exercise training involves repeated exposure to progressively increasing metabolic, thermal, mechanical, and oxidative stress. This exposure stimulates physiological adaptations that improve tolerance to similar perturbations. Achieving such adaptations is the purpose of exercising regularly, and it underpins exercise's protective nature against developing several diseases.
Our current understanding of the signal integration and coordination of the cellular mechanisms that govern skeletal muscle plasticity is incomplete. This Special Issue provides novel insights into the molecular, cellular, tissue, and overall body adjustments to intense exercise demands. We gathered contributions from leading scientific experts to give the readers state-of-the-art skeletal muscle and exercise manuscripts. Free Radical Biology and Medicine published this issue in 2024, leveraging one of the most important international multi-sporting competition events celebrated every four years globally.

Cold Spring Harbor Perspectives in Biology, 2025
Skeletal muscle is one of the tissues with the highest range of variability in metabolic rate, wh... more Skeletal muscle is one of the tissues with the highest range of variability in metabolic rate, which, to a large extent, is critically dependent on tightly controlled and fine-tuned mitochondrial activity. Besides energy production, other mitochondrial processes, including calcium buffering, generation of heat, redox and reactive oxygen species homeostasis, intermediate metabolism, substrate biosynthesis, and anaplerosis, are essential for proper muscle contractility and performance. It is thus not surprising that adequate mitochondrial function is ensured by a plethora of mechanisms, aimed at balancing mitochondrial biogenesis, proteostasis, dynamics, and degradation. The fine-tuning of such maintenance mechanisms ranges from proper folding or degradation of individual proteins to the elimination of whole organelles, and in extremis, apoptosis of cells. In this review, the present knowledge on these processes in the context of skeletal muscle biology is summarized. Moreover, existing gaps in knowledge are highlighted, alluding to potential future studies and therapeutic implications.

Free Racial Biology and Medicine, 2024
Skeletal muscle plasticity enables an enormous potential to adapt to various internal and externa... more Skeletal muscle plasticity enables an enormous potential to adapt to various internal and external stimuli and perturbations. Most notably, changes in contractile activity evoke a massive remodeling of biochemical, metabolic and force-generating properties. In recent years, a large number of signals, sensors, regulators and effectors have been implicated in these adaptive processes. Nevertheless, our understanding of the molecular underpinnings of training adaptation remains rudimentary. Specifically, the mechanisms that underlie signal integration, output coordination, functional redundancy and other complex traits of muscle adaptation are unknown. In fact, it is even unclear how stimulus-dependent specification is brought about in endurance or resistance exercise. In this review, we will provide an overview on the events that describe the acute perturbations in single endurance and resistance exercise bouts. Furthermore, we will provide insights into the molecular principles of long-term training adaptation. Finally, current gaps in knowledge will be identified, and strategies for a multi-omic and-cellular analyses of the molecular mechanisms of skeletal muscle plasticity that are engaged in individual, acute exercise bouts and chronic training adaptation discussed. ☆ This article is a contribution to the special issue entitled "Unlocking Athletic Potential: Exploring Exercise Physiology from Mechanisms to Performance.

Journal of Physiology, 2024
Circadian rhythms, governed by the dominant central clock, in addition to various peripheral cloc... more Circadian rhythms, governed by the dominant central clock, in addition to various peripheral clocks, regulate almost all biological processes, including sleep-wake cycles, hormone secretion and metabolism. In certain contexts, the regulation and function of the peripheral oscillations can be decoupled from the central clock. However, the specific mechanisms underlying muscle-intrinsic clock-dependent modulation of muscle function and metabolism remain unclear. We investigated the outcome of perturbations of the primary and secondary feedback loops of the molecular clock in skeletal muscle by specific gene ablation of Period circadian regulator 2 (Per2) and RAR-related orphan receptor alpha (Rorα), respectively. In both models, a dampening of core clock gene oscillation was observed, while the phase was preserved. Moreover, both loops seem to be involved in the homeostasis of amine groups. Highly divergent outcomes were seen for overall muscle gene expression, primarily affecting circadian rhythmicity in the PER2 knockouts and non-oscillating genes in the RORα knockouts, leading to distinct outcomes in terms of metabolome and phenotype. These results highlight the entanglement of the molecular clock and muscle plasticity and allude to specific functions of different clock components, i.e. the primary and secondary feedback loops, in this context. The reciprocal interaction between muscle contractility and circadian clocks might therefore be instrumental to determining a finely tuned adaptation of muscle tissue to perturbations in health and disease. KEY POINTS: Specific perturbations of the primary and secondary feedback loop of the molecular clock result in specific outcomes on muscle metabolism and function. Ablation of Per2 (primary loop) or Rorα (secondary loop) blunts the amplitude of core clock genes, in absence of a shift in phase. Perturbation of the primary feedback loop by deletion of PER2 primarily affects muscle gene oscillation. Knockout of RORα and the ensuing modulation of the secondary loop results in the aberrant expression of a large number of non-clock genes and proteins. The deletion of PER2 and RORα affects muscle metabolism and contractile function in a circadian manner, highlighting the central role of the molecular clock in modulating muscle plasticity.

Journal of Clinical Investigations, 2024
Satellite cells, the stem cells of skeletal muscle tissue, hold a remarkable regeneration capacit... more Satellite cells, the stem cells of skeletal muscle tissue, hold a remarkable regeneration capacity and therapeutic potential in regenerative medicine. However, low satellite cell yield from autologous or donor-derived muscles hinders the adoption of satellite cell transplantation for the treatment of muscle diseases, including Duchenne muscular dystrophy (DMD). To address this limitation, here we investigated whether satellite cells can be derived in allogeneic or xenogeneic animal hosts. First, injection of CRISPR/Cas9-corrected Dmdmdx mouse induced pluripotent stem cells (iPSCs) into mouse blastocysts carrying an ablation system of host satellite cells gave rise to intraspecies chimeras exclusively carrying iPSC-derived satellite cells. Furthermore, injection of genetically corrected DMD iPSCs into rat blastocysts resulted in the formation of interspecies rat-mouse chimeras harboring mouse satellite cells. Notably, iPSC-derived satellite cells or derivative myoblasts produced in intraspecies or interspecies chimeras restored dystrophin expression in DMD mice following intramuscular transplantation and contributed to the satellite cell pool. Collectively, this study demonstrates the feasibility of producing therapeutically competent stem cells across divergent animal species, raising the possibility of generating human muscle stem cells in large animals for regenerative medicine purposes.

Journal of Proteome Research, 2024
In recent years, a plethora of different data-independent acquisition methods have been developed... more In recent years, a plethora of different data-independent acquisition methods have been developed for proteomics to cover a wide range of requirements. Current deep proteome profiling methods rely on fractionations, elaborate chromatography, and mass spectrometry setups or display suboptimal quantitative precision. We set out to develop an easy-to-use one shot DIA method that achieves high quantitative precision and high proteome coverage. We achieve this by focusing on a small mass range of 430-670 m/z using small isolation windows without overlap. With this new method, we were able to quantify >9200 protein groups in HEK lysates with an average coefficient of variance of 3.2%. To demonstrate the power of our newly developed narrow mass range method, we applied it to investigate the effect of PGC-1α knockout on the skeletal muscle proteome in mice. Compared to a standard data-dependent acquisition method, we could double proteome coverage and, most importantly, achieve a significantly higher quantitative precision, as compared to a previously proposed DIA method. We believe that our method will be especially helpful in quantifying low abundant proteins in samples with a high dynamic range. All raw and result files are available at massive.ucsd.edu (MSV000092186).

Nature Metabolism, 2023
Skeletal muscle has an enormous plastic potential to adapt to various external and internal pertu... more Skeletal muscle has an enormous plastic potential to adapt to various external and internal perturbations. Although morphological changes in endurance-trained muscles are well described, the molecular underpinnings of training adaptation are poorly understood. We therefore aimed to elucidate the molecular signature of muscles of trained male mice and unravel the training status-dependent responses to an acute bout of exercise. Our results reveal that, even though at baseline an unexpectedly low number of genes define the trained muscle, training status substantially affects the transcriptional response to an acute challenge, both quantitatively and qualitatively, in part associated with epigenetic modifications. Finally, transiently activated factors such as the peroxisome proliferator-activated receptor-γ coactivator 1α are indispensable for normal training adaptation. Together, these results provide a molecular framework of the temporal and training status-dependent exercise response that underpins muscle plasticity in training.

Proceedings of the National Academy of Science, 2023
Sarcopenia, the age-related loss of skeletal muscle mass and function, can dramatically impinge o... more Sarcopenia, the age-related loss of skeletal muscle mass and function, can dramatically impinge on quality of life and mortality. While mitochondrial dysfunction and imbalanced proteostasis are recognized as hallmarks of sarcopenia, the regulatory and functional link between these processes is underappreciated and unresolved. We therefore investigated how mitochondrial proteostasis, a crucial process that coordinates the expression of nuclear- and mitochondrial-encoded mitochondrial proteins with supercomplex formation and respiratory activity, is affected in skeletal muscle aging. Intriguingly, a robust mitochondrial translation impairment was observed in sarcopenic muscle, which is regulated by the peroxisome proliferator-activated receptor γ coactivator 1 α (PGC-1α) with the estrogen-related receptor α (ERRα). Exercise, a potent inducer of PGC-1α activity, rectifies age-related reduction in mitochondrial translation, in conjunction with quality control pathways. These results highlight the importance of mitochondrial proteostasis in muscle aging, and elucidate regulatory interactions that underlie the powerful benefits of physical activity in this context.

Physiological Reports, 2023
Exercise effectively promotes and preserves cardiorespiratory, neuromuscular, metabolic, and cogn... more Exercise effectively promotes and preserves cardiorespiratory, neuromuscular, metabolic, and cognitive functions throughout life. The molecular mechanisms underlying the beneficial adaptations to exercise training are, however, still poorly understood. To improve the mechanistic study of specific exercise training adaptations, standardized, physiological, and well-characterized training interventions are required. Therefore, we performed a comprehensive interrogation of systemic changes and muscle-specific cellular and molecular adaptations to voluntary low-resistance wheel running (Run) and progressive high-resistance wheel running (RR) in young male mice. Following 10 weeks of training, both groups showed similar improvements in body composition and peak oxygen uptake (V̇O2peak ), as well as elevated mitochondrial proteins and capillarization markers in the M. plantaris. Run mice clearly outperformed RR mice in a forced treadmill running capacity test, while RR mice displayed increased grip strength as well as superior mass gains in the M. soleus, associated with distinct proteomic changes specifying the two paradigms. Thus, even though both training modalities induce overlapping adaptations, Run interventions preferably improve submaximal running performance, while progressive RR is a valid model to study training-induced gains in grip strength and plantar flexor hypertrophy.

Physiological Reviews, 2023
Human skeletal muscle demonstrates remarkable plasticity, adapting to numerous external stimuli i... more Human skeletal muscle demonstrates remarkable plasticity, adapting to numerous external stimuli including the habitual level of contractile loading. Accordingly, muscle function and exercise capacity encompass a broad spectrum, from inactive individuals with low levels of endurance and strength to elite athletes who produce prodigious performances underpinned by pleiotropic training-induced muscular adaptations. Our current understanding of the signal integration, interpretation, and output coordination of the cellular and molecular mechanisms that govern muscle plasticity across this continuum is incomplete. As such, training methods and their application to elite athletes largely rely on a "trial-and-error" approach, with the experience and practices of successful coaches and athletes often providing the bases for "post hoc" scientific enquiry and research. This review provides a synopsis of the morphological and functional changes along with the molecular mechanisms underlying exercise adaptation to endurance-and resistance-based training. These traits are placed in the context of innate genetic and interindividual differences in exercise capacity and performance, with special consideration given to aging athletes. Collectively, we provide a comprehensive overview of skeletal muscle plasticity in response to different modes of exercise and how such adaptations translate from "molecules to medals."

Molecular Metabolism, 2022
Objective: Skeletal muscle is a pivotal organ for the coordination of systemic metabolism, cons... more Objective: Skeletal muscle is a pivotal organ for the coordination of systemic metabolism, constituting one of the largest storage site for glucose, lipids and amino acids. Tight temporal orchestration of protein breakdown in times of fasting has to be balanced with preservation of muscle mass and function. However, the molecular mechanisms that control the fasting response in muscle are poorly understood.
Methods: We now have identified a role for the peroxisome proliferator-activated receptor γ coactivator 1β (PGC-1β) in the regulation of catabolic pathways in this context in muscle-specific loss-of-function mouse models.
Results: Muscle-specific knockouts for PGC-1β experience mitigated muscle atrophy in fasting, linked to reduced expression of myostatin, atrogenes, activation of AMP-dependent protein kinase (AMPK) and other energy deprivation signaling pathways. At least in part, the muscle fasting response is modulated by a negative effect of PGC-1β on the nuclear factor of activated T-cells 1 (NFATC1).
Conclusions: Collectively, these data highlight the complex regulation of muscle metabolism and reveal a new role for muscle PGC-1β in the control of proteostasis in fasting.

International Journal of Molecular Science, 2022
OCTN2 (SLC22A5) is a carnitine transporter whose main function is the active transport of carniti... more OCTN2 (SLC22A5) is a carnitine transporter whose main function is the active transport of carnitine into cells. In skeletal muscle and other organs, the regulation of the SLC22A5 gene transcription has been shown to depend on the nuclear transcription factor PPAR-α. Due to the observation that the muscle OCTN2 mRNA level is maintained in PPAR-α knock-out mice and that PGC-1α overexpression in C2C12 myoblasts increases OCTN2 mRNA expression, we suspected additional regulatory pathways for SLC22A5 gene transcription. Indeed, we detected several binding sites of the myocyte-enhancing factor MEF2 in the upstream region of the SLC22A5 gene, and MEF2C/MEF2D stimulated the activity of the OCTN2 promoter in gene reporter assays. This stimulation was increased by PGC-1α and was blunted for a SLC22A5 promoter fragment with a mutated MEF2 binding site. Further, we demonstrated the specific binding of MEF2 to the SLC22A5 gene promoter, and a supershift of the MEF2/DNA complex in electrophoretic mobility shift assays. In immunoprecipitation experiments, we could demonstrate the interaction between PGC-1α and MEF2. In addition, SB203580, a specific inhibitor of p38 MAPK, blocked and interferon-γ stimulated the transcriptional activity of the SLC22A5 gene promoter. Finally, mice with muscle-specific overexpression of OCTN2 showed an increase in OCTN2 mRNA and protein expression in skeletal muscle. In conclusion, we detected and characterized a second stimulatory pathway of SLC22A5 gene transcription in skeletal muscle, which involves the nuclear transcription factor MEF2 and co-stimulation by PGC-1α and which is controlled by the p38 MAPK signaling cascade.

Journal of Physiology, 2023
Ageing is a biological process that is linked to a functional decline, ultimately resulting in de... more Ageing is a biological process that is linked to a functional decline, ultimately resulting in death. Large interindividual differences exist in terms of life- and healthspan, representing life expectancy and the number of years spent in the absence of major diseases, respectively. The genetic and molecular mechanisms that are involved in the regulation of the ageing process, and those that render age the main risk factor for many diseases are still poorly understood. Nevertheless, a growing number of compounds have been put forward to affect this process. However, for scientists and laypeople alike, it is difficult to separate fact from fiction, and hype from hope. In this review, we discuss the currently pursued pharmacological anti-ageing approaches. These are compared to non-pharmacological interventions, some of which confer powerful effects on health and well-being, in particular an active lifestyle and exercise. Moreover, functional parameters and biological clocks as well as other molecular marks are compared in terms of predictive power of morbidity and mortality. Then, conceptual aspects and roadblocks in the development of anti-ageing drugs are outlined. Finally, an overview on current and future strategies to mitigate age-related pathologies and the extension of life- and healthspan is provided.

PLoS ONE, 2022
Background: Central retinal arteriolar (CRAE) and venular (CRVE) diameter equivalents are predi... more Background: Central retinal arteriolar (CRAE) and venular (CRVE) diameter equivalents are predictive for cardiovascular and all-cause mortality in humans. The aim of this study was to investigate the inter- and intraobserver variability for the assessment of CRAE and CRVE in mice using fluorescein contrast enhancement as compared to crude analysis.
Methods: Three high quality images with (F) and without fluorescein (NF) of eight mice (type C57BL) were recorded and analysed by two independent experienced investigators to investigate interobserver variability. In addition, one investigator analysed 20 F and 20 NF images twice to investigate intraobserver variability. The time course of CRAE and CRVE vessel responses after fluorescein injection were recorded in one mouse every 30 seconds for 15 minutes.
Results: The interobserver variability was lower in F images compared to NF images for CRAE (r = 0.99, p < 0.001 vs. r = 0.65, p = 0.083) and CRVE (r = 0.99, p < 0.001 vs. r = 0.79, p = 0.019). Intraobserver variability for CRAE (r = 0.99, p < 0.001 vs. r = 0.48, p = 0.032) and CRVE (r = 0.98, p < 0.001 vs. r = 0.86, p < 0.001) were lower in F compared to NF images. Fluorescein injection induced vascular staining mimicking vessel dilation (+14%) followed by a long-lasting stable staining phase well suited for precise measurements.
Conclusions: Measurement variability can be optimized by use of fluorescein as contrast enhancement in mice. Standardization for time of image acquisition after fluorescein injection is advisable. Translation of static retinal vessel analysis into a rodent model has the potential to bridge the research gap between proof of concept studies in animals and clinical studies in humans.

Scientific Reports, 2022
Non-alcoholic fatty liver disease is a continuum of disorders among which non-alcoholic steatohep... more Non-alcoholic fatty liver disease is a continuum of disorders among which non-alcoholic steatohepatitis (NASH) is particularly associated with a negative prognosis. Hepatocyte lipotoxicity is one of the main pathogenic factors of liver fibrosis and NASH. However, the molecular mechanisms regulating this process are poorly understood. The main aim of this study was to dissect transcriptional mechanisms regulated by lipotoxicity in hepatocytes. We achieved this aim by combining transcriptomic, proteomic and chromatin accessibility analyses from human liver and mouse hepatocytes. This integrative approach revealed several transcription factor networks deregulated by NASH and lipotoxicity. To validate these predictions, genetic deletion of the transcription factors MAFK and TCF4 was performed, resulting in hepatocytes that were better protected against saturated fatty acid oversupply. MAFK- and TCF4-regulated gene expression profiles suggest a mitigating effect against cell stress, whil...

Frontiers in Physiology, 2022
Circadian rhythms regulate a host of physiological processes in a time-dependent manner to mainta... more Circadian rhythms regulate a host of physiological processes in a time-dependent manner to maintain homeostasis in response to various environmental stimuli like day and night cycles, food intake, and physical activity. Disruptions in circadian rhythms due to genetic mutations, shift work, exposure to artificial light sources, aberrant eating habits, and abnormal sleep cycles can have dire consequences for health. Importantly, exercise training efficiently ameliorates many of these adverse effects and the role of skeletal muscle in mediating the benefits of exercise is a topic of great interest. However, the molecular and physiological interactions between the clock, skeletal muscle function and exercise are poorly understood, and are most likely a combination of molecular clock components directly acting in muscle as well as in concordance with other peripheral metabolic organ systems like the liver. This review aims to consolidate existing experimental evidence on the involvement ...
Uploads
Papers by Christoph Handschin
Methods: A multi-omics analysis was performed: ATAC-sequencing was used to map chromatin accessibility in myonuclei isolated from endurance-trained and untrained mice at multiple time points (0 h, 6 h, and 72 h) post-exercise. Gene expression was assessed via RNA-sequencing, and motif activity analysis identified regulatory factors involved in exercise-induced chromatin remodeling and transcriptomic response.
Results: Endurance training amplified rapid chromatin closing immediately after exercise, with trained muscle exhibiting a more pronounced loss of chromatin accessibility at 0 h and 6 h post-exercise compared to untrained muscle. These chromatin accessibility changes persisted longer in trained muscle, with significant retention until 72 h post-exercise. Immediate early transcription factors, such as Fos and Jun, showed a training state-dependent shift in activation dynamics. Similarly, specific modulation of genes involved in metabolism, insulin response and angiogenesis was observed.
Conclusions: Endurance training triggers rapid and persistent chromatin remodeling in muscle, contributing to the transcriptional response to exercise. Our findings suggest that training induces long-lasting epigenetic changes, potentially underpinning muscle memory and improved physiological resilience. These new insights into the molecular mechanisms of muscle adaptation help to understand the training response, and might become relevant in disease prevention.
Our current understanding of the signal integration and coordination of the cellular mechanisms that govern skeletal muscle plasticity is incomplete. This Special Issue provides novel insights into the molecular, cellular, tissue, and overall body adjustments to intense exercise demands. We gathered contributions from leading scientific experts to give the readers state-of-the-art skeletal muscle and exercise manuscripts. Free Radical Biology and Medicine published this issue in 2024, leveraging one of the most important international multi-sporting competition events celebrated every four years globally.
Methods: We now have identified a role for the peroxisome proliferator-activated receptor γ coactivator 1β (PGC-1β) in the regulation of catabolic pathways in this context in muscle-specific loss-of-function mouse models.
Results: Muscle-specific knockouts for PGC-1β experience mitigated muscle atrophy in fasting, linked to reduced expression of myostatin, atrogenes, activation of AMP-dependent protein kinase (AMPK) and other energy deprivation signaling pathways. At least in part, the muscle fasting response is modulated by a negative effect of PGC-1β on the nuclear factor of activated T-cells 1 (NFATC1).
Conclusions: Collectively, these data highlight the complex regulation of muscle metabolism and reveal a new role for muscle PGC-1β in the control of proteostasis in fasting.
Methods: Three high quality images with (F) and without fluorescein (NF) of eight mice (type C57BL) were recorded and analysed by two independent experienced investigators to investigate interobserver variability. In addition, one investigator analysed 20 F and 20 NF images twice to investigate intraobserver variability. The time course of CRAE and CRVE vessel responses after fluorescein injection were recorded in one mouse every 30 seconds for 15 minutes.
Results: The interobserver variability was lower in F images compared to NF images for CRAE (r = 0.99, p < 0.001 vs. r = 0.65, p = 0.083) and CRVE (r = 0.99, p < 0.001 vs. r = 0.79, p = 0.019). Intraobserver variability for CRAE (r = 0.99, p < 0.001 vs. r = 0.48, p = 0.032) and CRVE (r = 0.98, p < 0.001 vs. r = 0.86, p < 0.001) were lower in F compared to NF images. Fluorescein injection induced vascular staining mimicking vessel dilation (+14%) followed by a long-lasting stable staining phase well suited for precise measurements.
Conclusions: Measurement variability can be optimized by use of fluorescein as contrast enhancement in mice. Standardization for time of image acquisition after fluorescein injection is advisable. Translation of static retinal vessel analysis into a rodent model has the potential to bridge the research gap between proof of concept studies in animals and clinical studies in humans.