Academia.eduAcademia.edu

Outline

Wavelet-based estimation of power densities of size-biased data

2021, arXiv (Cornell University)

https://doi.org/10.48550/ARXIV.2112.12895

Abstract

We propose a new wavelet-based method for density estimation when the data are size-biased. More specifically, we consider a power of the density of interest, where this power exceeds 1/2. Warped wavelet bases are employed, where warping is attained by some continuous cumulative distribution function. A special case is the conventional orthonormal wavelet estimation, where the warping distribution is the standard continuous uniform. We show that both linear and nonlinear wavelet estimators are consistent, with optimal and/or near-optimal rates. Monte Carlo simulations are performed to compare four special settings which are easy to interpret in practice. An application with a real dataset on fatal traffic accidents involving alcohol illustrates the method. We observe that warped bases provide more flexible and superior estimates for both simulated and real data. Moreover, we find that estimating the power of a density (for instance, its square root) further improves the results.

References (49)

  1. Borrajo, M. I., González-Manteiga, W., and Martínez-Miranda, M. D. (2017). Bandwidth selection for kernel density estimation with length- biased data. Journal of Nonparametric Statistics, 29(3):636-668.
  2. Brunel, E., Comte, F., and Guilloux, A. (2009). Nonparametric density estimation in presence of bias and censoring. TEST, 18(1):166-194.
  3. Cai, T. T. and Brown, L. D. (1998). Wavelet Shrinkage for Nonequispaced Samples. The Annals of Statistics, 26(5):1783-1799.
  4. Cai, T. T. and Brown, L. D. (1999). Wavelet estimation for samples with random uniform design. Statistics & Probability Letters, 42(3):313-321.
  5. Chesneau, C. (2010). Wavelet block thresholding for density estimation in the presence of bias. Journal of the Korean Statistical Society, 39(1):43-53.
  6. Chesneau, C., Dewan, I., and Doosti, H. (2012). Wavelet linear density estimation for associated stratified size-biased sample. Journal of Non- parametric Statistics, 24(2):429-445.
  7. Cox, D. R. (1969). Some sampling problems in technology. In Johnson, N. L. and Smith Jr., H., editors, New Developments in Survey Sampling, pages 506-527. Wiley-Interscience, New York.
  8. Cutillo, L., De Feis, I., Nikolaidou, C., and Sapatinas, T. (2014). Wavelet density estimation for weighted data. Journal of Statistical Planning and Inference, 146:1-19.
  9. Daubechies, I. and Lagarias, J. C. (1991). Two-scale difference equa- tions. I. Existence and global regularity of solutions. SIAM Journal on Mathematical Analysis, 22(5):1388-1410.
  10. Daubechies, I. and Lagarias, J. C. (1992). Two-Scale Difference Equa- tions. II. Local Regularity, Infinite Products of Matrices and Fractals. SIAM Journal on Mathematical Analysis, 23(4):1031-1079.
  11. Donoho, D. L., Johnstone, I. M., Kerkyacharian, G., and Picard, D. (1995). Wavelet Shrinkage: Asymptopia? Journal of the Royal Statistical Society. Series B (Methodological), 57(2):301-369.
  12. Donoho, D. L., Johnstone, I. M., Kerkyacharian, G., and Picard, D. (1996). Density estimation by wavelet thresholding. The Annals of Statis- tics, 24(2):508-539.
  13. Donoho, D. L. and Johnstone, J. M. (1994). Ideal spatial adaptation by wavelet shrinkage. Biometrika, 81(3):425-455.
  14. Doukhan, P. (1988). Formes de Toëplitz associées à une analyse multi- échelle. C. R. Acad. Sci. Paris Série I, 306:663-666.
  15. Doukhan, P. and León, J. R. (1990). Déviations quadratique d'estimateurs de densité par projections orthogonales. C. R. Acad. Sci. Paris Série I Math, 310:425-430.
  16. Efromovich, S. (1999). Nonparametric curve estimation: methods, the- ory and applications. Springer series in statistics. Springer, New York.
  17. Efromovich, S. (2004a). Density estimation for biased data. The Annals of Statistics, 32(3):1137-1161.
  18. Efromovich, S. (2004b). Distribution estimation for biased data. Journal of Statistical Planning and Inference, 124(1):1-43.
  19. El Barmi, H. and Simonoff, J. S. (2000). Transformation-based density estimation For weighted distributions. Journal of Nonparametric Statis- tics, 12(6):861-878.
  20. Fan, J. and Gijbels, I. (1996). Local polynomial modelling and its appli- cations. Number 66 in Monographs on statistics and applied probability. Chapman & Hall, London.
  21. Giné, E. and Guillou, A. (2002). Rates of strong uniform consistency for multivariate kernel density estimators. Annales de l'Institut Henri Poincaré (B) Probability and Statistics, 38(6):907-921.
  22. Giné, E. and Nickl, R. (2009). Uniform limit theorems for wavelet den- sity estimators. The Annals of Probability, 37(4):1605-1646.
  23. Guo, H. and Kou, J. (2019a). Pointwise density estimation based on negatively associated data. Journal of Inequalities and Applications, 2019(1):206.
  24. Guo, H. and Kou, J. (2019b). Pointwise density estimation for biased sample. Journal of Computational and Applied Mathematics, 361:444-458.
  25. Hardle, W., Kerkyacharian, G., Picard, D., and Tsybakov, A. B. (1998). Wavelets, Approximation and Statistical Applications. Number 129 in Lec- ture notes in statistics. Springer, New York.
  26. Jones, M. C. (1991). Kernel density estimation for length biased data. Biometrika, 78(3):511-519.
  27. Kerkyacharian, G. and Picard, D. (1992). Density estimation in Besov spaces. Statistics & Probability Letters, 13(1):15-24.
  28. Kerkyacharian, G. and Picard, D. (1993). Density estimation by kernel and wavelets methods: Optimality of Besov spaces. Statistics & Probability Letters, 18(4):327-336.
  29. Kerkyacharian, G. and Picard, D. (2004). Regression in Random Design and Warped Wavelets. Bernoulli, 10(6):1053-1105.
  30. Klemelä, J. (2009). Smoothing of multivariate data: density estimation and visualization. Wiley Series in Probability and Statistics. John Wiley & Sons, Hoboken, N.J.
  31. Kou, J. and Guo, H. (2018). Wavelet density estimation for mixing and size-biased data. Journal of Inequalities and Applications, 2018(1):189.
  32. Mallat, S. G. (2008). A Wavelet Tour of Signal Processing: The Sparce Way. Elsevier/Academic Press, Boston, 3rd edition.
  33. Montoril, M. H., Chang, W., and Vidakovic, B. (2019). Wavelet-Based Estimation of Generalized Discriminant Functions. Sankhya B, 81(2):318- 349.
  34. Montoril, M. H., Morettin, P. A., and Chiann, C. (2018). Wavelet esti- mation of functional coefficient regression models. International Journal of Wavelets, Multiresolution and Information Processing, 16(01):1850004.
  35. Morettin, P. A., Pinheiro, A., and Vidakovic, B. (2017). Wavelets in Functional Data Analysis. SpringerBriefs in Mathematics. Springer Inter- national Publishing, Cham.
  36. Pinheiro, A. and Vidakovic, B. (1997). Estimating the square root of a density via compactly supported wavelets. Computational Statistics & Data Analysis, 25(4):399-415.
  37. Ramírez, P. and Vidakovic, B. (2010). Wavelet density estimation for stratified size-biased sample. Journal of Statistical Planning and Inference, 140(2):419-432.
  38. Restrepo, J. M. and Leaf, G. K. (1997). Inner product computations using periodized Daubechies wavelets. International Journal for Numerical Methods in Engineering, 40(19):3557-3578.
  39. Scott, D. W. (2015). Multivariate density estimation: theory, practice, and visualization. Wiley Series in Probability and Statistics. John Wiley & Sons, Inc, Hoboken, New Jersey, 2nd edition.
  40. Sheather, S. J. and Jones, M. C. (1991). A Reliable Data-Based Band- width Selection Method for Kernel Density Estimation. Journal of the Royal Statistical Society: Series B (Methodological), 53(3):683-690.
  41. Silverman, B. W. (1978). Weak and Strong Uniform Consistency of the Kernel Estimate of a Density and its Derivatives. The Annals of Statistics, 6(1).
  42. Tenzer, Y., Mandel, M., and Zuk, O. (2021). Testing Independence Under Biased Sampling. Journal of the American Statistical Association, pages 1-13.
  43. Vardi, Y. (1982). Nonparametric Estimation in the Presence of Length Bias. The Annals of Statistics, 10(2):616-620.
  44. Vidakovic, B. (1999). Statistical modeling by wavelets. Wiley series in probability and mathematical statistics. Applied probability and statistics section. Wiley, New York.
  45. Wang, J., Wang, M., and Zhou, Y. (2013). Nonlinear wavelet density estimation for biased data in Sobolev spaces. Journal of Inequalities and Applications, 2013(1):308.
  46. Yu, Y. (2020). Pointwise Wavelet Estimation of Density Function with Change-Points Based on NA and Biased Sample. Results in Mathematics, 75(4):146.
  47. Yu, Y. and Liu, X. (2020). Pointwise wavelet change-points estima- tion for dependent biased sample. Journal of Computational and Applied Mathematics, 380:112986.
  48. Chesneau, C. (2010). Wavelet block thresholding for density estimation in the presence of bias. Journal of the Korean Statistical Society, 39(1):43-53.
  49. Restrepo, J. M. and Leaf, G. K. (1997). Inner product computations using periodized Daubechies wavelets. International Journal for Numerical Methods in Engineering, 40(19):3557-3578.