Academia.eduAcademia.edu

Outline

Multiwavelet density estimation

2013, Applied Mathematics and Computation

https://doi.org/10.1016/J.AMC.2012.11.099

Abstract

Accurate density estimation methodologies play an integral role in a variety of scientific disciplines, with applications including simulation models, decision support tools, and exploratory data analysis. In the past, histograms and kernel density estimators have been the predominant tools of choice, primarily due to their ease of use and mathematical simplicity. More recently, the use of wavelets for density estimation has gained in popularity due to their ability to approximate a large class of functions, including those with localized, abrupt variations. However, a well-known attribute of wavelet bases is that they can not be simultaneously symmetric, orthogonal, and compactly supported. Multiwavelets-a more general, vector-valued, construction of wavelets-overcome this disadvantage, making them natural choices for estimating density functions, many of which exhibit local symmetries around features such as a mode. We extend the methodology of wavelet density estimation to use multiwavelet bases and illustrate several empirical results where multiwavelet estimators outperform their wavelet counterparts at coarser resolution levels.

References (45)

  1. Ahmad, I. A., 1982. Integrated mean square properties of density estimation by orthogonal series methods for dependent variables. Ann. Inst. Statist. Math. 34, 339-350.
  2. Alpert, B., 1993. A class of bases in l 2 for the sparse representation of integral operators. SIAM J. Math. Analysis 24.
  3. Anderson, G. L., de Figueiredo, R. J. P., 1978. An adaptive orthogonal-series es- timator for probability density functions. Tech. Rep. 7803, Rice University ECE. URL http://hdl.handle.net/1911/19675
  4. Bacchelli, S., Papi, S., 2002. Matrix thresholding for multiwavelet image denois- ing. Numerical Algorithms 33, 41-52.
  5. Caudle, K. A., Wegman, E., 2009. Nonparametric density estimation of stream- ing data using orthogonal series. Computational Statistics and Data Analysis 53, 3980-3986.
  6. Čencov, N., 1962. Evaluation of an unknown density distribution from observa- tions. Soviet Mathematics Doklady 3, 1559-1562.
  7. Cheng, J., Ghosh, A., Jiang, T., Deriche, R., 2009. A riemannian framework for orientation distribution function computing. In: Medical Image Computing and Computer-Assisted Intervention. pp. 911-918.
  8. Chui, C. K., Lian, J. A., 1995. A study of orthonormal multiwavelets. Tech. rep., Texas A&M University.
  9. Daubechies, I., 1992. Ten Lectures on Wavelets. CBMS-NSF Reg. Conf. Series in Applied Math. SIAM.
  10. Donoho, D., Johnstone, I., 1998. Minimax estimation via wavelet shrinkage. The Annals of Statistics 26, 879-921.
  11. Donoho, D., Johnstone, I., Kerkyacharian, G., Picard, D., 1996. Density estima- tion by wavelet thresholding. The Annals of Statistics 24, 508-539.
  12. Donovan, G., Geronimo, J., Hardin, D., Massopust, P., 1996. Construction of or- thogonal wavelets using fractral interpolation functions. SIAM J. Math. Analysis 23, 1015-1030.
  13. Downie, T. R., Silverman, B. W., 1998. The discrete multiple wavelet transform and thresholding methods. IEEE Transactions on Signal Processing 46, 2558- 2561.
  14. Gajek, L., 1986. On improving density estimators which are not bona fide func- tions. The Annals of Statistics 14 (4), 1612-1618.
  15. García-Treviño, E. S., Barria, J. A., February 2012. Maximum likelihood wavelet density estimation with applications to image and shape matching. IEEE Trans- actions on Image Processing 56 (2), 327-344.
  16. Geronimo, J., Hardin, D., Massopust, P., 1994. Fractal functions and wavelet expansions based on several scaling functions. J. Approx. Theory 78, 373-401.
  17. Goodman, T., Lee, S., March 1994. Wavelets of multiplicity r. Transactions of the American Mathematical Society 342 (1), 307-324.
  18. Goodman, T. N. T., Lee, S. L., Tang, W. S., August 1993. Wavelets in wandering subspaces. Transactions of the American Mathematical Society 338 (2), 639-654.
  19. Hall, P., 1986. On the rate of convergence of orthogonal series density estimators. Journal of the Royal Statistical Society. Series B (Methodical) 48, 115-122.
  20. Izenman, A., March 1991. Recent developments in nonparametric density esti- mation. Journal of the American Statistical Association 86 (413), 205-224.
  21. Keinert, F., 2004. Wavelets and Multiwavelets. Chapman and Hall/CRC.
  22. Kronmal, R., Tarter, M., 1968. The estimation of probability densities and cumu- latives by fourier series methods. Journal of the American Statistical Association 63, 925-952.
  23. Lebrun, J., Vetterli, M., 1997. Balanced multiwavelets. In: Proc. IEEE ICASSP. Munich, Germany.
  24. Lebrun, J., Vetterli, M., April 1998. Balanced multiwavelets theory and design. IEEE Transactions on Signal Processing 46 (4), 1119-1125.
  25. Lebrun, J., Vetterli, M., September 2001. High-order balanced multiwavelets: Theory, factorization, and design. IEEE Transactions on Signal Processing 49 (9), 1918-1930.
  26. Marron, S. J., Wand, M. P., 1992. Exact mean integrated squared error. The An- nals of Statistics 20 (2), 712-736.
  27. Peter, A., 2008. Matlab toolbox for 1and 2-d wavelet density estimation. URL http://adrian.petervision.com/Default.aspx?tabid=95
  28. Peter, A., Rangarajan, A., April 2008. Maximum likelihood wavelet density es- timation with applications to image and shape matching. IEEE Transactions on Image Processing 17 (4), 458-468.
  29. Pinheiro, A., Vidakovic, B., 1997. Estimating the square root of a density via compactly supported wavelets. Computational Statistics and Data Analysis 25 (4), 399-415.
  30. Provost, S. B., Jiang, M., 2012. Orthogonal polynomial density estimates: Alter- native representation and degree selection. International Journal of Computational Mathematical Sciences 6 (1), 17-24.
  31. Schwartz, S., 1967. Estimation of probability density by an orthogonal series. Ann. Math. Statist. 38 (4), 1261-1265.
  32. Scott, D. W., 2001. Multivariate Density Estimation: Theory, Practice, and Visu- alization. Wiley-Interscience.
  33. Selesnick, I. W., November 1998. Multiwavelet bases with extra approximation properties. IEEE Transactions on Signal Processing 46 (11), 2898-2908.
  34. Shen, L., Tan, H. H., Tham, J. Y., 2000. Some properties of symmetric- antisymmetric orthonormal multiwavelets. IEEE Transactions on Signal Process- ing 48 (7), 2161-2163.
  35. Silverman, B., 1998. Density Estimation for Statistics and Data Analysis. Chap- man and Hall/CRC.
  36. Strang, G., Nguyen, T., 1997. Wavelets and Filter Banks. Wellesley-Cambridge Press.
  37. Strang, G., Strela, V., 1995. Short wavelets and matrix dilation equations. In: IEEE Transactions on Signal Processing. Vol. 43. pp. 108-115.
  38. Strela, V., 1996. Multiwavelets: Theory and applications. Ph.D. thesis, MIT.
  39. Strela, V., Heller, P. N., Strang, G., Topiwala, P., Heil, C., April 1999. The ap- plication of multiwavelet filterbanks to image processing. IEEE Transactions on Image Processing 8 (4), 548-563.
  40. Strela, V., Walden, A., March 1998. Signal and image denoising via wavelet thresholding: orthogonal and biorthogonal, scalar and multiple wavelet trans- forms. Tech. Rep. TR-98-01, Imperial College Statistics Section.
  41. Vidakovic, B., 1999. Statistical Modeling by Wavelets. John Wiley and Sons, New York.
  42. Vidakovic, B., 1999. Statistical Modeling by Wavelets. Wiley, New York.
  43. Walter, G., Shen, X., 1999. Continuous non-negative waveltes and their use in density estimation. Communications in Statistics. Theory and Methods 28 (1), 1-18.
  44. Wand, M. P., Jones, M. C., 1993. Comparison of smoothing parameterizations in bivariate kernel density estimation. Journal of the American Statistical Associa- tion 88 (422), 520-528.
  45. Watson, G., August 1969. Density estimation by orthogonal series. The Annals of Mathematical Statistics 40 (4), 1496-1498.