Academia.eduAcademia.edu

Outline

A Model for Visualizing Critical Least Association Rules

2014, International Journal of Software Engineering and Its Applications

https://doi.org/10.14257/IJSEIA.2014.8.1.15

Abstract

Mining least association rules has received a great attention from the past decades. However, no current research has been specifically performed for visualizing these types of rules. In this paper, a model for visualizing critical least association rules is presented. The proposed model contains five main steps, including scanning dataset, constructing Least Pattern Tree (LP-Tree), applying Critical Relative Support (CRS), capturing Critical Least Association Rules and finally visualizing the respective rules.

References (28)

  1. R. Agrawal, T Imielinski and A. Swami, "Database Mining: A Performance Perspective", IEEE Transactions on Knowledge and Data Engineering, vol. 5, no. 6, (1993), pp. 914-925.
  2. Z. Abdullah, T. Herawan and M. M. Deris, "An Alternative Measure for Mining Weighted Least Association Rule and Its Framework", J.M. Zain et al. (Eds.): ICSECS 2011, Communication of Computer and Information Sciences, Springer-Verlag, vol. 188, no. II, (2011), pp. 475-485.
  3. T. Herawan, I. T. R. Yanto and M. M. Deris, "Soft set approach for maximal association rules mining", D. Ślęzak et al. (Eds.): DTA 2009, Communication of Computer and Information Sciences, Springer-Verlag, vol. 64, (2009), pp. 163-170.
  4. Z. Abdullah, T. Herawan and M. M. Deris, "Mining significant least association rules using fast SLP- Growth algorithm", T.H. Kim and H. Adeli (Eds.): AST/UCMA/ISA/ACN 2010. Lecture Notes in Computer Science, Springer-Verlag, vol. 6059, (2010), pp. 324-336.
  5. T. Herawan and M. M. Deris, "A soft set approach for association rules mining", Knowledge Based Systems, vol. 24, no. 1, (2011), pp. 186-195.
  6. Z. Abdullah, T. Herawan and M. M. Deris, "Tracing Significant Information using Critical Least Association Rules Model", International Journal of Innovative Computing and Applications, vol. 5, no. 1, (2013), pp. 3-17.
  7. M. D. Mustafa, N. F. Nabila, D. J. Evans, M. Y. Saman and A. Mamat, "Association rules on significant rare data using second support", International Journal of Computer Mathematics, vol. 83, no. 1, (2006), pp. 69-80.
  8. Z. Abdullah, T. Herawan and M. M. Deris, "Detecting Critical Least Association Rules in Medical Databases", International Journal of Modern Physics: Conference Series, World Scientific, vol. 9, (2012), pp. 464-479.
  9. T. Herawan, P. Vitasari and Z. Abdullah, "Mining critical least association rules of student suffering language and social anxieties", International Journal of Continuing Engineering Education and Life Long Learning, vol. 23, no. 2, (2013), pp. 128-146.
  10. Z. Abdullah, T. Herawan, A. Noraziah and M. M. Deris, "Mining Significant Association Rules from Educational Data using Critical Relative Support Approach", Procedia Social and Behavioral Sciences, vol. 28, (2011), pp. 97-101.
  11. T. Herawan, P. Vitasari and Z. Abdullah, "Mining interesting association rules of student suffering mathematics anxiety", J.M. Zain et al. (Eds.): ICSECS 2011, Communication of Computer and Information Sciences, Springer-Verlag, vol. 188, no. II, (2011), pp. 495-508.
  12. T. Herawan, P. Vitasari and Z. Abdullah, "Mining Interesting Association Rules on Student Suffering Study Anxieties using SLP-Growth Algorithm", International Journal of Knowledge and Systems Science, IGI Global, vol. 3, no. 2, (2012), pp. 24-41.
  13. Z. Abdullah, T. Herawan and M. M. Deris, "Scalable model for mining critical least association rules", Rongbo Zhu et al. (Eds.): ICICA 2010, Lecture Notes in Computer Science, Springer-Verlag, vol. 6377, (2010), pp. 509-516.
  14. P. C. Wong, P. Whitney and J. Thomas, "Visualizing Association Rules for Text Mining", Proceedings 1999 IEEE Symposium on Information Visualization (Info Vis '99), (1999), pp. 120-123.
  15. D. Bruzzese and P. Buono, "Combining Visual Techniques for Association Rules Exploration", Proceedings of the working conference on Advanced Visual Interfaces, (AVI 2004), ACM Press, (2004), pp. 381-384.
  16. A. Ceglar, J Roddick, P. Calder and C. Rainsford, "Visualizing hierarchical associations. Knowledge and Information Systems", vol. 8, (2005), pp. 257-275.
  17. I. Kopanakis, N. Pelekis, H. Karanikas and T. Mavroudkis, "Visual Techniques for the Interpretation of Data Mining Outcomes", P. Bozanis and E.N. Houstis (Eds.): PCI 2005, Lecture Notes in Computer Science, Springer-Verlag, vol. 3746, (2005), pp. 25-35.
  18. A. A. Lopes, R. Pinho, F. V. Paulovich and R. Minghim, "Visual text mining using association rules", Computers & Graphics, vol. 31, (2007), pp. 316-326.
  19. C. K. S. Leung, P. Irani and C. L. Carmichael, "WiFIsViz: Effective Visualization of Frequent Itemsets", Proceeding of Eighth IEEE International Conference on Data Mining (ICDM 2008), IEEE Press, (2008), pp. 875-880.
  20. C. K. S. Leung, P. Irani and C. L. Carmichael, "FIsViz: A Frequent Itemset Visualizer", T. Washio et al. (Eds.): PAKDD 2008, Lecture Notes in Computer Science, Springer-Verlag, vol. 5012, (2008), pp. 644- 652.
  21. C. K. S. Leung and C. L. Carmichael, "FpViz: A Visualizer for Frequent Pattern Mining", Proceedings of the ACM SIGKDD Workshop on Visual Analytics and Knowledge Discovery (VAKD'09), ACM Press, (2009), pp. 30-49.
  22. T. Herawan, I. T. R. Yanto and M. M. Deris, "SMARViz: Soft maximal association rules visualization", H.B. Zaman et al. (Eds.): IVIC 2009,Lecture Notes in Computer Science, Springer-Verlag, vol. 5857, (2009),pp. 664-674.
  23. Z. Abdullah, T. Herawan and M. M. Deris, "Visualizing the Construction of Incremental Disorder Trie Itemset Data Structure (DOSTrieIT) for Frequent Pattern Tree (FP-Tree)", H.B. Zaman et al. (Eds.): IVIC 2011, Lecture Notes in Computer Science, Springer-Verlag, vol. 7066, (2011), pp. 183-195.
  24. R. Agrawal, T. Imielinski and A. Swami, "Mining association rules between sets of items in large databases", Proceedings of the ACM SIGMOD International Conference on the Management of Data, (1993), pp. 207-216.
  25. P. Jaccard, "Étude comparative de la distribution florale dans une portion des Alpes et des Jura", Bulletin de la Société Vaudoise des Sciences Naturelles, vol. 37, (1901), pp. 547-579.
  26. G. Piatetsky-Shapiro, "Discovery, Analysis, and Presentation of Strong Rules", Knowledge Discovery in Databases. AAAI/MIT Press, CA, (1991), pp. 229-248.
  27. E. B. Fowlkes and C. J. Mallows, "A Method for Comparing Two Hierarchical Clusterings", Journal of the American Statistical Association, vol. 78, no. 383, (1983), pp. 553-569.
  28. E. R. Omiecinski, "Alternative interest measures for mining associations in databases", IEEE Transactions on Knowledge and Data Engineering, vol. 15, no. 1, (2003), pp. 57-69.