Academia.eduAcademia.edu

Outline

GERVIS:” scalable” visualization of generic association rules

Abstract

The extremely large number of association rules that can be drawn from -even reasonably sized-datasets has bootstrapped the development of more acute techniques or methods to reduce the size of the reported rule sets. In order to be reliable in a decision making process, such discovered rules have to be both concise and easily understandable for users, and/or as an input to visualization tools [1].

References (68)

  1. P. Adriaans and D. Zantinge. Data mining. Addison-Wesley, 1997.
  2. R. Agrawal, T. Imielinski, and A. Swami. Mining association rules between sets of items in large databases. In Proceedings of the ACM SIGMOD International Conference on Manage- ment of Data, Washington, USA, pages 207-216, June 1993.
  3. R. Agrawal and R. Skirant. Fast algorithms for mining associ- ation rules. In Proceedings of the 20th International Confer- ence on Very Large Databases, pages 478-499, June 1994.
  4. Wai-Ho Au and K. C.C. Chan. Farm: A data mining system for discovering fuzzy association rules. In Proceedings of the 18th IEEE International Conf. on Fuzzy Systems, Seoul, Ko- rea, pages 1217-1222, 1999.
  5. M. Barbut and B. Monjardet. Ordre et classification. Algèbre et Combinatoire. Hachette, Tome II, 1970.
  6. Y. Bastide, N. Pasquier, R. Taouil, L. Lakhal, and G. Stumme. Mining minimal non-redundant association rules using fre- quent closed itemsets. In Proceedings of the International Conference DOOD'2000, LNCS, Springer-verlag, pages 972- 986, July 2000.
  7. R. Belohlavek. Fuzzy Galois connections. Math. Logic Jour- nal, 45(4):497-504, 1999.
  8. S. Ben Yahia, T. Hamrouni, and E. Mephu Nguifo. Frequent closed itemset based algorithms: A thorough structural and analytical survey. In ACM-SIGKDD Explorations, volume 8(1), pages 93-104, June 2006.
  9. S. BenYahia and A. Jaoua. Discovering knowledge from fuzzy concept lattice. In A. Kandel, M. Last, and H. Bunke, edi- tors, Data mining and Computational Intelligence, Studies in Fuzziness and Soft Computing, Vol. 68, chapter 7, pages 167- 190. Physica Verlag, Heidelberg, March 2001.
  10. S. BenYahia and E. Mephu Nguifo. Revisiting generic bases of association rules. In Proceedings of 6th International Conference on Data Warehousing and Knowledge Discov- ery (DaWaK 2004) (Springer-Verlag), Zaragoza, Spain, pages 58-67, september 2004.
  11. S. BenYahia and Y. Slimani. Discovering Association Rules using the Formal Concept Analysis. Extraction des Connais- sances et Apprentissage (special issue of International Con- ference of Journé es francophones d'Extraction et Gestion des Connaissances (EGC'2002), Montpellier, France, 1(4):233- 244, January 2002.
  12. S. BenYahia and P. Valtchev. Extracting Rules From Generic Concept Intents: The Case Of Fuzzy Association Rules. Technical report, DIRO, Université de Montréal, Montréal, Québec, Canada, H3C 3J7, February 2003.
  13. J. Blanchard, F. Guillet, and H. Briand. A user-driven and quality-oriented visualization for mining association rules. In Proceedings of the Third IEEE International Conference on Data Mining, Melbourne, Florida, pages 493-496, November 2003.
  14. S. Brin, R. Motawni, and C. Silverstein. Beyond market bas- kets : Generalizing association rules to correlation. In Pro- ceedings of the SIGMOD, Tucson, Arizona (USA), pages 265- 276, May 1997.
  15. S. Brin, R. Motwani, and J. Ullman. Dynamic itemset count- ing and implication rules. In Proceedings ACM SIGMOD, In- ternational conference on Management of Data ,Tucson, Ari- zona, USA, pages 255-264, 1997.
  16. P. Buono and M. F. Costabile. Visualizing association rules in a framework for visual data mining. In M. Hemmje et al., editor, From Integrated Publication and Informations Systems to Virtual Information and Knowledge Environments, LNCS, pages 221-231. Springer-verlag, February 2004.
  17. B. Bustos, D. A. Keim, J. Schneidewind, T. Schreck, and M. Sips. Pattern visualization. Technical report, University of konstanz, Germany, Computer Science department, December 2003.
  18. K. C. C. Chan and Wai-Ho Au. Mining fuzzy association rules. In Proceedings of the Sixth International Conference on Information and Knowledge Management (CIKM'97), Las Vegas, Nevada, pages 209-215, November 1997.
  19. G. Chen, Q. Wei, and E. Kerre. Fuzzy Data Mining: Dis- covery of Fuzzy Generalized Association Rules. In Bordagna and Pasi, editors, Recent Research Issues on Management of Fuzziness in Databases, Studies in Fuzziness and Soft Com- puting. Physica Verlag, Heidelberg, March 2000.
  20. J. Chen, T. Zheng, W. Thorne, O. R. Zaiane, and R. Goebel. Visual data mining of web navigational data. In E. Banissi et al., editor, Proceedings of the 11th International Conference on Information Visualization (IV), pages 649-656, Zurich, Switzerland, 4-6 july 2007. IEEE Press number 2900.
  21. O. Couturier, T. Hamrouni, S. Ben Yahia, and E. Mephu Nguifo. A scalable association rule visualization towards dis- playing large amounts of knowledge. In Proceedings of 11th International conference on Information Visualization IV'07, Zurich, Switzerland, IEEE Computer Society, pages 657-663, July 2007.
  22. O. Couturier, E. Mephu Nguifo, and B. Noiret. A hierar- chical user-driven method for association rules mining. In Proceedings of the 11th International Conference on Human- Computer Interaction (HCI'05), Las Vegas, USA, July 2005.
  23. F. Cuppens and R. Demolombe. How to recognize interesting topics to provide cooperative answering. Information Systems, 14(2):163-173, 1989.
  24. M. Delgado, N. Marin, D. Sanchez, and MA. Vila. Fuzzy as- sociation rules: general model and applications. IEEE Trans- actions on Fuzzy Systems, 11(2):214-225, 2003.
  25. D. Dubois, E. Hüllermeier, and H. Prade. A note on qual- ity measures for fuzzy association rules. In T. Bilgic, B. De Baets, and O. Kaynak, editors, Proceedings IFSA03, 10th In- ternational Fuzzy Systems Association World Congress, LNCS 2715, Istambul, Turkey, pages 677-648. Springer-verlag, july 2003.
  26. D. Dubois and H. Prade. The three semantics of fuzzy sets. Fuzzy Sets and Systems Journal, (90):141-150, 1997.
  27. V. Frantz and J. Shapiro. Algorithms for automatic construc- tion of query formulations in boolean form. Journal of the American Society for Information Science, 1(42):16-26, 1991.
  28. B. Ganter and R. Wille. Formal Concept Analysis. Springer- Verlag, 1999.
  29. Gh. Gasmi, S. BenYahia, E. Mephu Nguifo, and Y. Slimani. IGB: A new informative generic base of association rules. In Proceedings of the International Ninth Pacific-Asia Confer- ence on Knowledge Data Discovery (PAKDD'05), LNAI 3518, Hanoi, Vietnam, pages 81-90. Springler-Verlag, May 2005.
  30. A. Ghouila, S. Ben Yahia, Dh. Malouch, and S.Abdelhak. MULTI-SOM : A novel unsupervised classification approach. In Proceedings of International conference on Automatic Learning (CAP'07), Grenoble, France, pages 203-218, July 2007.
  31. J.L. Guigues and V. Duquenne. Familles minimales d'implications informatives résultant d'un tableau de données binaires. Mathématiques et Sciences Humaines, (95):5-18, 1986.
  32. T. Hamrouni, S. BenYahia, and Y. Slimani. PRINCE: An algo- rithm for generating rule bases without closure computations. In A Min Tjoa and J. Trujillo, editors, Proceedings of the 7th International Conference on Data Warehousing and Knowl- edge Discovery (DaWaK 2005), Springer-Verlag, LNCS, vol- ume 3589, Copenhagen, Denmark, pages 346-355, 22-26 Au- gust 2005.
  33. J. Han and N. Cercone. RULEVIZ: A model for visualizing knowledge discovery process. In Proceedings of 6th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Boston, MA, USA, pages 244-253, August 2000.
  34. J. Han and Y. Fu. Discovery of multiple-level association rules from large databases. In Proceedings of the VLDB Confer- ence, pages 420-431, 1995.
  35. H. Hofmann, A. Siebes, and A. F. X. Wilhelm. Visualizing association rules with interactive mosaic plots. In Proceedings of 6th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Boston, MA, USA, pages 227- 235, August 2000.
  36. T.-Pei Hong, C. Sheng Kuo, S. Chi, and S. Wang. Mining fuzzy rules from quantitative data based on the APRIORITID algorithm. In Proceedings of the International of the 2000 ACM symposium on Applied computing, Como, Italy, pages 534-536, March 2000.
  37. E. Hüllermeier. Special issue on fuzzy sets in knowledge dis- covery. Fuzzy Sets and Systems, 149(1):1-3, 2005.
  38. A. Jaoua, S. Elloumi, S. Ben Yahia, and F. Alvi. Galois con- nection in fuzzy binary relations: applications for discover- ing association rules and decision making. In J. Desharnais, M. Frappier, and W. McCaul, editors, Relational Methods in Computer Science: The Québec Seminar, chapter 5, pages 85- 112. Methodos Press, 2002.
  39. M. Kryszkiewicz. Concise representations of association rules. In D. J. Hand, N.M. Adams, and R.J. Bolton, edi- tors, Proceedings of Pattern Detection and Discovery, ESF Exploratory Workshop, London, UK, volume 2447 of Lecture Notes in Computer Science, pages 92-109. Springer, Septem- ber 2002.
  40. P. Kuntz, F. Guillet, R. Lehn, and H. Briand. A user-driven process for mining association rules. In Proceedings of the 4th European Symposium on Principles of Data Mining and Knowledge Discovry (PKDD'2000), pages 483-489, 2000.
  41. M. Lanzenberger, S. Miksch, S. Ohmann, and C. Popow. Ap- plying information visualization techniques to capture and ex- plore the course of cognitive behavioral therapy. In Proceed- ings of the ACM Symposium on Applied Computing 2003, Melbourne, FL, 2003.
  42. B. Liu, W. Hsu, K. W ang, and S. Che. Visually aided exploration of interesting association rules. In Proceedings of the 3rd International Conf. on Research and Develop- ment in Knowledge Discovery and Data mining (PAKDD'99), LNCS,Vol. 1574, Springer-verlag, pages 380-389, April 1999.
  43. M. Luxenburger. Implication partielles dans un contexte. Mathématiques et Sciences Humaines, 29(113):35-55, 1991.
  44. J. D. Mackinlay, G. G. Robertson, and S. K. Card. The per- spective wall: detail and context smoothly integrated. In Pro- ceedings of SIGCHI conference on Human factors in comput- ing systems: Reaching through technology, pages 173-176, 1991.
  45. J. B. MacQueen. Some methods for classification and anal- ysis of multivariate observations. In Proceedings of 5th Berkeley Symposium on Mathematical Statistics and Proba- bility,Berkeley, CA, University of California Press, number 1, pages 281-297, 1996.
  46. H. Manilla, H. Toinoven, and I. Verkamo. Efficient algo- rithms for discovering association rules. In AAAI Worshop on Knowledge Discovery in Databases, Seattle, Washington (USA), pages 181-192, July 1994.
  47. R. Meo, G. Psaila, and S. Ceri. A new SQL-like operator for mining association rules. In Proceedings of the VLDB Con- ference, pages 122-133, Bombay, India, 1996.
  48. A. Motro. Extending the relational Databases Model to sup- port Goal queries. In L. Lerschberg, editor, Expert Database Systems, pages 129-150. The Benjamin/Cummings Publish- ing Company, 1987.
  49. R. T. Ng, V. S. Lakshmanan, J. Han, and A. Pang. Exploratory mining and pruning optimizations of constrained association rules. In Proceedings ACM SIGMOD International Confer- ence on Management of Data, pages 13-24, Seattle, Washing- ton, June 2-4 1998.
  50. M. Ohsaki, S. Kitaguchi, K. Okamoto, H. Yokoi, and T. Ya- maguchi. Evaluation of rule interestingness measures with a clinical dataset on hepatitis. In Springer-Verlag, editor, Proceedings of the International Conference PKDD'04, Pisa (Italy), pages 362-373, september 2004.
  51. W. Pedrycz. Data mining and fuzzy modeling. In Proceedings of the the Biennial Conference of the NAFIPS,Berkeley, CA, pages 263-267, 1996.
  52. J. Pitrat. Métaconnaissance, Futur de l'Intelligence Artifi- cielle (Metaknowledge, the future of artifcial intelligence). Editions Hermès., Paris, 1990.
  53. S. Pollandt. Fuzzy-Begriffe: Formale Begriffsanalyse un- scharfer Daten. Springer-verlag, 1997.
  54. H. Prade and D. Dubois. Fuzzy sets and systems: Theory and applications. Academic Press, New York, 1980.
  55. F. Rioult, J.F. Boulicaut, B. Crémilleux, and J. Besson. Using transposition for pattern discovery from microarray data. In Proceedings of the 8th ACM SIGMOD workshop on Research issues in Data Mining and Knowledge Discovery (DMKD'03), pages 73-79, New York, NY, USA, 2003. ACM Press.
  56. B. Shneiderman. The eyes have it: A task by data type taxon- omy for information visualization. In IEEE Computer Society Press, editor, Proceedings IEEE Symposium on Visual Lan- guages, Boulder, Colorado. 336-343, 1996.
  57. S. J. Simoff. Towards the development of envorinments for designing visualization support for visual data mining. In Pro- ceedings of the International Workshop on Visual Data Mining of the 5th International Conference on Principles and Knowl- edge Discovery in Databases (PKDD'01), 2005.
  58. L. Singh, M. Beard, L. Getoor, and M. B. Blake. Visual mining of multi-modal social networks at different abstrac- tion levels. In E. Banissi et al., editor, Proceedings of the 11th International Conference on Information Visualization (IV), pages 672-679, Zurich, Switzerland, 4-6 july 2007. IEEE Press number 2900.
  59. R. Skirant and R. Agrawal. Mining quantitative association rules in large relational tables. In Proceedings of ACM SIG- MOD Intl Conf.,Monreal, Canada, pages 1-12, June 1996.
  60. R. Srikant, Q. Vu, and R. Agrawal. Mining association rules with item constraints. In Proc. of the 3rd International Confer- ence on Knowledge Discovery in Databases and Data Mining, Newport Beach, California, pages 67-73, August 1997.
  61. G. Stumme, R. Taouil, Y. Bastide, N. Pasquier, and L. Lakhal. Intelligent structuring and reducing of association rules with formal concept analysis. In Proc. KI'2001 conference, LNAI 2174, Springer-verlag, pages 335-350, September 2001.
  62. T. Sudkamp. Examples, counterexamples, and measuring fuzzy associations. Fuzzy Sets and Systems, 149(1):57-71, 2005.
  63. Shin-Mu Tseng. Mining association rules with interestingness constraints in large databases. International Journal of Fuzzy Systems, 3(2):415-421, 2003.
  64. Q. Wei and G. Chen. Mining generalized association rules with fuzzy taxonomic structures. In Proceedings of the North America Fuzzy Information Processing Society (NAFIPS99), New York, pages 477-481, 1999.
  65. P.C. Wong, P. Whitney, and J. Thomas. Visualizing associa- tion rules for text mining. In Proceedings of the IEEE Sympo- sium on Information Visualization, San Francisco, CA, pages 120-123, October 1999.
  66. D.S. Yeung and E.C.C. Tsang. Weighted fuzzy production rules. Fuzzy Sets and Systems Journal, 88:299-313, 1997.
  67. M. Zaki and B. Phoophakdee. MIRAGE:A framework for mining, exploring and visualizing minimal association rules. Technical report, Rensselaer Polytechnic Institute, Computer Sciences Depatrment, USA, July 2003.
  68. M.J. Zaki. Mining Non-Redundant Association Rules. Data Mining and Knowledge Discovery, (9):223-248, 2004.