Academia.eduAcademia.edu

Outline

On the inertia of the block H-matrices

2017, Numerical Linear Algebra with Applications

https://doi.org/10.1002/NLA.2101

Abstract

The problem of determining matrix inertia is very important in many applications, for example, in stability analysis of dynamical systems. In the (point-wise) H-matrix case, it was proven that the diagonal entries solely reveal this information. This paper generalises these results to the block H-matrix cases for 1, 2, and ∞ matrix norms. The usefulness of the block approach is illustrated on 3 relevant numerical examples, arising in engineering.

References (11)

  1. Berman A, Plemmons R. Nonnegative matrices in the mathematical sciences. Philadelphia: SIAM; 1994.
  2. Kostić V. On general principles of eigenvalue localizations via diagonal dominance. Adv Comput Math. 2015;41(1): 55-75.
  3. Varga RS. Geršgorin and his circles. New York: Springer-Verlag; 2004.
  4. Cvetković L, Doroslovački K. Max norm estimation for the inverse of block matrices. Appl Math Comput. 2014;242: 694-706.
  5. Feingold DG, Varga RS. Block diagonally dominant matrices and generalizations of the Gerschgorin circle theorem. Pac J Math. 1962;12(4): 1241-1250.
  6. Fiedler M, Ptak V. Generalized norms of matrices and the location of the spectrum. Czech Math J. 1962;12(4): 558-571.
  7. Robert F. Blocs-H-matrices et convergence des methodes iteratives classiques par blocks. Linear Algebra Appl. 1969;2(2): 223-265.
  8. Ostrowski AM. On some metrical properties of operator matrices and matrices partitioned into blocks. J Math Anal Appl. 1961;2(2): 161-209.
  9. Huang T-Z. Stability criteria for matrices. Autom. 1998;34(5): 637-639.
  10. Betcke T, Higham N, Mehrmann V, Schröder C, Tisseur F. NLEVP: A Collection of nonlinear eigenvalue problems. ACM Trans Math Software (TOMS). 2013;39(2): Article No. 7.
  11. Amiraslania A, Corless RM, Lancaster P. Linearization of matrix polynomials expressed in polynomial bases. IMA J Numer Anal. 2009;29(1): 141-157. How to cite this article: Kostić VR, Cvetković L. On the inertia of the block H-matrices. Numer Linear Algebra Appl. 2017;e2101. https://doi.org/10.1002/nla.2101