A Criterion for Stability of Matrices
https://doi.org/10.1006/JMAA.1998.6020Abstract
A necessary and sufficient condition for the stability of n = n matrices with real entries is proved. Applications to asymptotic stability of equilibria for vector fields are considered. The results offer an alternative to the well-known Routh᎐Hurwitz conditions. ᮊ 1998 Academic Press
References (23)
- N. Z. Barabanov, On a problem of Kalman, Siberian Math. J. 29 1988 , 333᎐341.
- J. Bernet and J. Llibre, Counterexamples to Kalman and Markus᎐Yamabe conjectures in dimensions larger than 3, preprint, 1994.
- S. Busenberg and P. van den Driessche, Analysis of a disease transmission model in a Ž . population with varying size, J. Math. Biol. 28 1990 , 257᎐271.
- A. Cima, A. van den Essen, A. Gasull, E. Hubber, and F. Manosas, A polynomial counterexample to the Markus᎐Yamabe conjecture, preprint, 1995.
- W. A. Coppel, ''Stability and Asymptotic Behavior of Differential Equations,'' Heath, Boston, 1965.
- L. M. Druzkowski and H. K. Tutaj, Differential conditions to verify the Jacobian ˙Ž .
- Conjecture, Ann. Polon. Math. 59 1992 , 253᎐263.
- R. Feßler, A proof of the two-dimensional Markus᎐Yamabe stability conjecture and a Ž . generalization, Ann. Polon. Math. 62 1995 , 45᎐47.
- M. Fiedler, Additive compound matrices and inequality for eigenvalues of stochastic Ž . matrices, Czech. Math. J. 99 1974 , 392᎐402.
- A. A. Glutsyuk, A complete solution of the Jacobian problem for vector fields on the Ž . plane, Russian Math. Sur¨. 49 1994 , 185᎐186.
- C. Gutierrez, A solution of the bidimensional global asymptotic stability conjecture, Ann. Ž . Inst. Henri Poincare 12 1995 , 627᎐671.
- J. K. Hale, ''Ordinary Differential Equations,'' Wiley, New York, 1969.
- P. Hartman, On stability in the large for systems of ordinary differential equations, Ž . Canad. J. Math. 13 1961 , 480᎐492.
- P. Hartman and C. Olech, On global asymptotic stability of solutions of differential Ž . equations, Trans. Amer. Math. Soc. 104 1962 , 154᎐178.
- M. Y. Li, Global dynamics of an epidemiological model of SEIR type with varying population size, preprint, 1998.
- M. Y. Li, Bendixson's criterion for autonomous systems with an invariant linear subspace, Ž . Rocky Mountain J. Math. 25 1995 , 351᎐363.
- M. Y. Li, Dulac criteria for autonomous systems having an invariant affine manifold, Ž .
- J. Math. Anal. Appl. 199 1996 , 374᎐390.
- M. Y. Li and J. S. Muldowney, On R. A. Smith's autonomous convergence theorem, Ž . Rocky Mountain J. Math. 25 1995 , 365᎐379.
- L. Markus and H. Yamabe, Global stability criteria for differential equations, Osaka J. Ž . Math. 12 1960 , 305᎐317.
- J. S. Muldowney, Compound matrices and ordinary differential equations, Rocky Moun- Ž . tain J. Math. 20 1990 , 857᎐872.
- R. A. Smith, Some applications of Hausdorff dimension inequalities for ordinary differen- Ž . tial equations, Proc. Roy. Soc. Edinburgh Sect. A 104A 1986 , 235᎐259. Ž . Ž .
- C. Sturm, Autres demonstrations du meme theoreme, J. Math. Pures Appl. 9 1 1836 , ´ˆ`2 90᎐308.