Academia.eduAcademia.edu

Outline

A Criterion for Stability of Matrices

https://doi.org/10.1006/JMAA.1998.6020

Abstract

A necessary and sufficient condition for the stability of n = n matrices with real entries is proved. Applications to asymptotic stability of equilibria for vector fields are considered. The results offer an alternative to the well-known Routh᎐Hurwitz conditions. ᮊ 1998 Academic Press

References (23)

  1. N. Z. Barabanov, On a problem of Kalman, Siberian Math. J. 29 1988 , 333᎐341.
  2. J. Bernet and J. Llibre, Counterexamples to Kalman and Markus᎐Yamabe conjectures in dimensions larger than 3, preprint, 1994.
  3. S. Busenberg and P. van den Driessche, Analysis of a disease transmission model in a Ž . population with varying size, J. Math. Biol. 28 1990 , 257᎐271.
  4. A. Cima, A. van den Essen, A. Gasull, E. Hubber, and F. Manosas, A polynomial counterexample to the Markus᎐Yamabe conjecture, preprint, 1995.
  5. W. A. Coppel, ''Stability and Asymptotic Behavior of Differential Equations,'' Heath, Boston, 1965.
  6. L. M. Druzkowski and H. K. Tutaj, Differential conditions to verify the Jacobian ˙Ž .
  7. Conjecture, Ann. Polon. Math. 59 1992 , 253᎐263.
  8. R. Feßler, A proof of the two-dimensional Markus᎐Yamabe stability conjecture and a Ž . generalization, Ann. Polon. Math. 62 1995 , 45᎐47.
  9. M. Fiedler, Additive compound matrices and inequality for eigenvalues of stochastic Ž . matrices, Czech. Math. J. 99 1974 , 392᎐402.
  10. A. A. Glutsyuk, A complete solution of the Jacobian problem for vector fields on the Ž . plane, Russian Math. Sur¨. 49 1994 , 185᎐186.
  11. C. Gutierrez, A solution of the bidimensional global asymptotic stability conjecture, Ann. Ž . Inst. Henri Poincare 12 1995 , 627᎐671.
  12. J. K. Hale, ''Ordinary Differential Equations,'' Wiley, New York, 1969.
  13. P. Hartman, On stability in the large for systems of ordinary differential equations, Ž . Canad. J. Math. 13 1961 , 480᎐492.
  14. P. Hartman and C. Olech, On global asymptotic stability of solutions of differential Ž . equations, Trans. Amer. Math. Soc. 104 1962 , 154᎐178.
  15. M. Y. Li, Global dynamics of an epidemiological model of SEIR type with varying population size, preprint, 1998.
  16. M. Y. Li, Bendixson's criterion for autonomous systems with an invariant linear subspace, Ž . Rocky Mountain J. Math. 25 1995 , 351᎐363.
  17. M. Y. Li, Dulac criteria for autonomous systems having an invariant affine manifold, Ž .
  18. J. Math. Anal. Appl. 199 1996 , 374᎐390.
  19. M. Y. Li and J. S. Muldowney, On R. A. Smith's autonomous convergence theorem, Ž . Rocky Mountain J. Math. 25 1995 , 365᎐379.
  20. L. Markus and H. Yamabe, Global stability criteria for differential equations, Osaka J. Ž . Math. 12 1960 , 305᎐317.
  21. J. S. Muldowney, Compound matrices and ordinary differential equations, Rocky Moun- Ž . tain J. Math. 20 1990 , 857᎐872.
  22. R. A. Smith, Some applications of Hausdorff dimension inequalities for ordinary differen- Ž . tial equations, Proc. Roy. Soc. Edinburgh Sect. A 104A 1986 , 235᎐259. Ž . Ž .
  23. C. Sturm, Autres demonstrations du meme theoreme, J. Math. Pures Appl. 9 1 1836 , ´ˆ`2 90᎐308.