Academia.eduAcademia.edu

Outline

Electrostatic-Spray Ionization Mass Spectrometry

2012, Analytical Chemistry

https://doi.org/10.1021/AC301332K

Abstract

An electrostatic-spray ionization (ESTASI) method has been used for mass spectrometry (MS) analysis of samples deposited in or on an insulating substrate. The ionization is induced by a capacitive coupling between an electrode and the sample. In practice, a metallic electrode is placed close to but not in direct contact with the sample. Upon application of a high voltage pulse to the electrode, an electrostatic charging of the sample occurs leading to a bipolar spray pulse. When the voltage is positive, the bipolar spray pulse consists first of cations and then of anions. This method has been applied to a wide range of geometries to emit ions from samples in a silica capillary, in a disposable pipet tip, in a polymer microchannel, or from samples deposited as droplets on a polymer plate. Fractions from capillary electrophoresis were collected on a polymer plate for ESTASI MS analysis.

References (24)

  1. Nollet, J. A. Recherches sur les causes particulieres des pheńomeǹes eĺectriques, 1ere ed.; Chez les freres Guerin: Paris, 1749.
  2. Yamashita, M.; Fenn, J. B. J. Phys. Chem. 1984, 88, 4451-4459.
  3. Alexandrov, M. L.; Gall, L. N.; Krasnov, N. V.; Nikolaev, V. I.; Pavlenko, V. A.; Shkurov, V. A. Int. J. Mass Spectrom. Ion Processes 1983, 54, 231-235.
  4. Fenn, J. B.; Mann, M.; Meng, C. K.; Wong, S. F.; Whitehouse, C. M. Science 1989, 246, 64-71.
  5. Wang, Y.; Schubert, M.; Ingendoh, A.; Franzen, J. Rapid Commun. Mass Spectrom. 2000, 14, 12-17.
  6. Lu, W. Y.; Callahan, J. H.; Fry, F. S.; Andrzejewski, D.; Musser, S. M.; Harrington, P. D. Talanta 2011, 84, 1180-1187.
  7. Williams, K.; Hawkridge, A. M.; Muddiman, D. C. J. Am. Soc. Mass Spectrom. 2007, 18, 1-7.
  8. Hardman, M.; Makarov, A. A. Anal. Chem. 2003, 75, 1699-1705.
  9. Abonnenc, M.; Qiao, L. A.; Liu, B. H.; Girault, H. H. In Annual Review of Analytical Chemistry; Annual Reviews: Palo Alto, 2010; Vol. 3, pp 231-254.
  10. Rohner, T. C.; Lion, N.; Girault, H. H. Phys. Chem. Chem. Phys. 2004, 6, 3056-3068.
  11. Van Berkel, G. J.; Kertesz, V. Anal. Chem. 2007, 79, 5510-5520.
  12. Gamby, J.; Abid, J. P.; Girault, H. H. J. Am. Chem. Soc. 2005, 127, 13300-13304.
  13. Fercher, G.; Haller, A.; Smetana, W.; Vellekoopt, M. J. Anal. Chem. 2010, 82, 3270-3275.
  14. Tuma, P.; Samcova, E.; Stulik, K. Electroanalysis 2011, 23, 1870-1874.
  15. Wang, J.; Chen, G.; Muck, A. Anal. Chem. 2003, 75, 4475-4479.
  16. Huang, G.; Li, G.; Ducan, J.; Ouyang, Z.; Cooks, R. G. Angew. Chem., Int. Ed. 2011, 50, 2503-2506.
  17. Huang, G.; Li, G.; Cooks, R. G. Angew. Chem., Int. Ed. 2011, 50, 9907-9910.
  18. Peng, Y.; Zhang, S.; Gong, X.; Ma, X.; Yang, C.; Zhang, X. Anal. Chem. 2011, 83, 8863-8866.
  19. Lu, Y.; Zhou, F.; Shui, W. Q.; Bian, L. P.; Yang, P. Y. Anal. Chem. 2001, 73, 4748-4753.
  20. Chao, B. F.; Chen, C. J.; Li, F. A.; Her, G. R. Electrophoresis 2006, 27, 2083-2090.
  21. Berggren, W. T.; Westphall, M. S.; Smith, L. M. Anal. Chem. 2002, 74, 3443-3448.
  22. Wei, J. F.; Shui, W. Q.; Zhou, F.; Lu, Y.; Chen, K. K.; Xu, G. B.; Yang, P. Y. Mass Spectrom. Rev. 2002, 21, 148-162.
  23. Busnel, J.-M.; Josserand, J.; Lion, N.; Girault, H. H. Anal. Chem. 2009, 81, 3867-3872.
  24. Takats, Z.; Wiseman, J. M.; Gologan, B.; Cooks, R. G. Science 2004, 306, 471-473.