Academia.eduAcademia.edu

Outline

On the relation between action and linking

2021, Journal of Modern Dynamics

https://doi.org/10.3934/JMD.2021011

Abstract

We introduce numerical invariants of contact forms in dimension three, and use asymptotic cycles to estimate them. As a consequence we prove a version for Anosov Reeb flows of results due to Hutchings and Weiler on mean actions of periodic points. The main tool is the Action-Linking Lemma, expressing the contact area of a surface bounded by periodic orbits as the Liouville average of the asymptotic intersection number of most trajectories with the surface.

References (17)

  1. A. Abbondandolo and G. Benedetti, On the local systolic optimality of Zoll contact forms, arxiv:1912.04187
  2. A. Abbondandolo, B. Bramham, U. Hryniewicz, and P. A. S.Salomão, Sharp systolic inequal- ities for Reeb flows on the three-sphere, Invent. Math. 211(2018) 687-778.
  3. A.Abbondandolo, B. Bramham, U. Hryniewicz, Pedro A. S. Salomão, Systolic ratio, index of closed orbits and convexity for tight contact forms on the three-sphere, Compositio Mathe- matica v. 154 (12), 2643-2680, 2018.
  4. D. Bechara Senior, Asymptotic action and asymptotic winding number for area-preserving diffeomorphisms of the disk, arXiv:2003.05225
  5. G. Benedetti and J. Kang, A local contact systolic inequality in dimension three, J. Eur. Math. Soc., to appear, arxiv:1902.01249
  6. D. Cristofaro-Gardiner and M. Hutchings, From one Reeb orbit to two, Journ. of Diff. Geom. 102.1 (2016), 25-36.
  7. D. Cristofaro-Gardiner, M. Hutchings and V. G. B. Ramos, The asymptotics of ECH capac- ities, Invent. Math. 199, 187-214 (2015).
  8. P. Dehornoy, Asymptotic invariants of 3-dimensional vector fields, Winter Braids Lecture Notes Vol.2 (2015) 1-19.
  9. E. Ghys, Right-handed vector fields & the Lorenz attractor, Japan. J. Math. 4, 47-61 (2009).
  10. V. Ginzburg, D. Hein, U. Hryniewicz, and L. Macarini, Closed Reeb orbits on the sphere and symplectically degenerate maxima, Acta Math. Vietnam. 38 (2013) 55-78.
  11. U. Hryniewicz, A note on Schwartzman-Fried-Sullivan Theory, with an application, J. Fixed Point Theory Appl. 22, 25 (2020).
  12. M. Hutchings, Mean action and the Calabi invariant, J. Mod. Dyn. 10 (2016), 511-539.
  13. M. Hutchings, ECH capacities and the Ruelle invariant, arxiv:1910.08260
  14. K. Irie, Equidistributed periodic orbits of C ∞ -generic three-dimensional Reeb flows, arxiv:1812.01869
  15. K. Sigmund, On the space of invariant measures for hyperbolic flows , Amer. J. Math. 94, No. 1 (1972), 31-37.
  16. M. Weiler, Mean action of periodic orbits of area-preserving annulus diffeomorphisms, J. Topol. Anal., to appear, preprint available at arXiv:1810.05091.
  17. C. Viterbo, Metric and isoperimetric problems in symplectic geometry, J. Amer. Math. Soc. 13 (2000), 411-431.