Academia.eduAcademia.edu

Outline

Some remarks on R-contact flows

1993, Annals of Global Analysis and Geometry

https://doi.org/10.1007/BF00773454

Abstract

be an R-contact manifold, then the set of periodic points of the characteristic vector field is a nonempty union of closed, totally geodesic odd-dimensional submanifolds. Moreover, the R-metric cannot have nonpositive sectional curvature. We also prove that no R-contact form can exist on any torus.

References (11)

  1. BANYAGA, A.; RUKIMBIRA, P.: On R-contact manifolds. Preprint.
  2. BANYAGA, A.; FATHI A.; RUKIMBIttA, P.: On characteristics of R-contact manifolds. In preparation.
  3. BLAIR, D.: Contact manifolds in Riemannian Geometry. Lect. Notes in Math. 509, Springer Verlag.
  4. CARRI~RE, Y.: Flots riemanniens. In: Structures Transverses des Feuilletages. Ast(risque 116 (1982), 31-52.
  5. KOBAYASHI, S.: Fixed points of isometries. Nagoya Math. J. 13 (1958), 63-68.
  6. LUTZ, R.: Sur la g~ometrie des structures de contact invariantes. Ann. Inst. Fourier (Grenoble) 29 (1979), 283-306.
  7. LAWSON, H.B.; YAu, S.T.: Compact manifolds of nonpositive curvature. J. Differ- ential Geom. 7 (1972), 211-228.
  8. PooR,W.: Differential Geometric Structures. McGraw-Hill Book Company, 1981.
  9. REINHART, B.: Foliated manifolds with bundle-like metrics. Ann. of Math. 69 (1959), 119-132.
  10. RUKIMBIRA, P.: Some properties of almost contact flows. Ph.D. Thesis, Penn Stkte University, 1991.
  11. PHILIPPE RUKIMBIRA Department of Mathematics Florida International University Miami, Florida 33199 USA (Received July 1, 1992; new version November 5, 1992)