Academia.eduAcademia.edu

Outline

Aging mechanisms and lifetime of PEFC and DMFC

2004, Journal of Power Sources

https://doi.org/10.1016/J.JPOWSOUR.2003.09.033

Abstract

This paper provides an overview of several operating conditions which can have a significant effect on the durability of polymer electrolyte fuel cells (PEFCs) and direct methanol fuel cells (DMFC), including: low reactant flows, high and low humidification levels, and high and low temperatures. The possible effects of these conditions, along with possible mitigating strategies, are discussed. Data from various tests are presented demonstrating lifetimes from 1000 h to greater than 13,000 h for various conditions and applications.

FAQs

sparkles

AI

What explains degradation differences between PEFCs and DMFCs?add

DMFCs exhibit higher degradation rates of 10-25 V/h compared to 2-10 V/h in PEFCs, primarily due to operating conditions and material interactions.

How does operational flexibility affect fuel cell lifetime?add

Fuel cell operational flexibility, influenced by reactant flow rates and temperature, plays a crucial role in determining lifetime, which can range from 3000 to 40,000 hours based on application.

What mechanisms contribute to fuel starvation in fuel cells?add

Fuel starvation arises from uneven flow sharing or ice formation in channels, leading to significant performance drops and operational failures during conditions such as sub-zero starts.

Which strategies improve water management in fuel cells?add

Countercurrent reactant flow configurations and enhanced electrode designs help redistribute product water, preventing flooding or drying, thus maintaining cell performance.

When is load cycling particularly beneficial for DMFC operation?add

Implementing load cycling significantly reduces performance degradation in DMFCs; for instance, cycling during operation resulted in ∼35% performance loss over 2000 hours, compared to ∼370% without cycling.

References (25)

  1. S.K.A. Wasmus, J. Electroanal. Chem. 461 (1999) 14-31.
  2. J. St-Pierre, D.P. Wilkinson, S. Knights, M.L. Bos, J. N. Mater. Electrochem. Sys. 3 (2000) 99-106.
  3. D.P. Wilkinson, J. St-Pierre, Durability, in: W. Vielstich, H. Gasteiger, A. Lamm (Eds.), Handbook of Fuel Cells: Fundamentals, Technology and Applications, vol. 3, Wiley, 2003, pp. 611-626 (Chapter 47).
  4. P. Costamagna, S. Srinivasan, J. Power Sources 102 (2001) 242-252.
  5. E. Passalacqua, M. Vivaldi, N. Giordano, P.L. Anotonucci, K. Ki- noshita, in: Proceedings of the 27th Intersociety Energy Conversion Engineering Conference, vol. 929294, 1992, pp. 3.425-3.431.
  6. R.E. Billings, The Hydrogen World View, American Academy of Science, 1991.
  7. S.D. Knights, D.P. Wilkinson, S.A. Campbell, J.L. Taylor, J.M. Gas- coyne, T.R. Ralph, PCT WO 01/15247 A2, 1 March 2001.
  8. J.L. Taylor, D.P. Wilkinson, D.S. Wainwright, T.R. Ralph, S.D. Knights, PCT WO 01/15249 A2, 1 March 2001.
  9. S.D. Knights, J.L. Taylor, D.P. Wilkinson, S.A. Campbell, PCT WO 01/15254 A2, 1 March 2001.
  10. S.D. Knights, J.L. Taylor, D.P. Wilkinson, D.S. Wainwright, PCT WO 01/15255 A2, 1 March 2001.
  11. D.P. Wilkinson, H.H. Voss, N.J. Fletcher, M.C. Johnson, E.G. Pow, United States Patent 5,773,160 (June 30 1998).
  12. J. St-Pierre, D.P. Wilkinson, H. Voss, R. Pow, in: O. Savadogo, P.R. Roberge (Eds.), New Materials for Fuel Cell and Modern Battery Systems II, Ecole Polytechnique, Montreal, 1997, pp. 318-329.
  13. N.J. Fletcher, C.Y. Chow, E.G. Pow, B.M. Wozniczka, H.H. Voss, G. Hornburg, D.P. Wilkinson, United States Patent 5,547,776 (20 August 1996).
  14. D.P. Wilkinson, J. St-Pierre, J. Power Sources 113 (2003) 101-108.
  15. M.C. Johnson, D.P. Wilkinson, C.P. Asman, M.L. Bos, R.J. Potter, United States Patent 5,840,438 (24 November 1998).
  16. Y.W. Rho, S. Srinivasan, Y.T. Kho, J. Electrochem. Soc. 141 (1994) 2084-2096.
  17. R. Sims, I.F. Jr. Kuhn, Cold Weather Operational Considerations for Direct Hydrogen, Automotive Fuel Cell Systems.
  18. Jr. T.A. Zawodzinski, C. Karuppaiah, F. Uribe, S. Gottesfeld, in: J. Mc Breen, S. Mukherjee, S. Srinivasan (Eds.), Proceedings of the 1st International Symposium of the Electrochemical Society, Electrode Materials and Processes for Energy Conversion and Storage IV, PV 97-13, Montreal, Canada, May 1997, The Electrochemical Society, Pennington, NJ, pp. 139-149.
  19. J. Roberts, J. St-Pierre, M. van Der Geest, A. Atbi, N. Fletcher, WO 01/24296, 5 April 2001.
  20. S.F. Simpson, C.E. Salinas, A.J. Cisar, O.J. Murphy, Factors affect- ing the performance of proton exchange membrane fuel cells, in: A. Landgrebe, S. Gottesfeld, G. Halpert (Eds.), Proceedings of the 1st International Symposium of the Electrochemical Society, First Inter- national Symposium on Proton Conducting Membrane Fuel Cells, PV 95-23, Hardbound, Chicago, Illinois, The Electrochemical Soci- ety, Pennington, NJ, pp. 182-192 (English).
  21. M.S. Wilson, J.A. Valerio, S. Gottesfeld, Electrochim. Acta 40 (1995) 355-363.
  22. M. Sadler, A.J. Stapleton, R.P.G. Heath, N.S. Jackson, Fuel Cell Power for Transportation, SP-1589, SAE, vol. 81-90, March 2001.
  23. A. Sen, K.E. Leach, R.D. Varjian, Determination of water content and resisivity of perfluorosulfonic acid fuel cell membranes, in: D.H. Doughty, B. Vyas, T. Takamura, J.R. Huff (Eds.), Proceedings of the Materials Research Society Symposium on the Materials for Electrochemical Energy Storage and Conversion: Batteries Capacitors and Fuel Cells, vol. 393, 17 April 1995, pp. 157-162 (English).
  24. S. Gottesfeld, J. Pafford, J. Electrochem. Soc. 135 (1988) 2651-2652.
  25. G. Lamont, D. Wilkinson, United States Patent 5,763,765 (9 June 1998).