Academia.eduAcademia.edu

Outline

Engineering and Technology Journal

https://doi.org/10.30684/ETJ.2025.158872.1934

Abstract

AI-driven robotics transforms smart manufacturing by improving efficiency, flexibility, and productivity. • Emerging tools like edge AI and digital twins enable real-time decisions through humanmachine collaboration. • AI-based automation reduces energy use, emissions, and waste, aligning with global sustainability objectives. • The transition to Industry 5.0 shifts toward more human-focused and environmentally sustainable production. Integrating AI-driven robotics and automation revolutionizes smart manufacturing by enhancing operational efficiency, productivity, and system flexibility across automotive, aerospace, and general equipment manufacturing industries. This review synthesizes findings from 84 peer-reviewed publications to evaluate the transformative potential of key AI technologies-including machine learning, digital twins, edge AI, and human-machine collaboration-in optimizing production lines and enabling predictive maintenance, real-time monitoring, and adaptive decision-making. While these innovations offer significant benefits in quality control, cost reduction, and sustainability, challenges remain in integrating AI with legacy systems, addressing workforce skill gaps, and ensuring cybersecurity and ethical compliance. Emerging trends such as 5G-enabled edge computing and collaborative robots (cobots) pave the way for low-latency communication and safer, more adaptable production environments aligned with Industry 5.0 principles. Real-world case studies demonstrate measurable economic impacts, including a 30% reduction in downtime at KONE's elevator manufacturing facility and scalable ROI for SMEs adopting AI-driven solutions. Furthermore, regulatory frameworks and ethical AI guidelines are increasingly essential for ensuring transparency, safety, and responsible deployment. Looking ahead, the convergence of immersive technologies (AR/VR/MR), digital twins, and ethical AI will further enhance virtual simulation, reduce material waste, and support sustainable industrial ecosystems. As manufacturers adopt these cuttingedge innovations, resilient, agile, and human-centric systems will become the new standard, balancing dynamic market demands with environmental and social responsibility. Ultimately, AI-driven automation promises to reshape global manufacturing ecosystems, driving economic growth and sustainable industrial transformation.

References (84)

  1. Z. Ullah, E. Pires, A. Reis, R. R. Nunes, A. Khan, and J. Bsrroso, Artificial Intelligence Transformative Power in the Fourth Industry Industrial Revolution: A Systematic Review of Process and Workforce Impact, 2025. https://doi.org/10.2139/ssrn.5079230
  2. A. Kumar Tyagi, S. Tiwari, and S. S. Ahmad, Industry 4.0, Smart Manufacturing, and Industrial Engineering. Boca Raton: CRC Press, 2024. https://doi.org/10.1201/9781003473886
  3. A. Chaudhary, V. Sharma, and A. Alkhayyat, Intelligent Manufacturing and Industry 4.0. Boca Raton: CRC Press, 2024. https://doi.org/10.1201/9781032630748
  4. V. Ponnusamy, D. Ekambaram, and N. Zdravkovic, Artificial Intelligence (AI)-Enabled Digital Twin Technology in Smart Manufacturing, in Industry 4.0, Smart Manufacturing, and Industrial Engineering, Boca Raton: CRC Press, 2024, 248-270. https://doi.org/10.1201/9781003473886-13
  5. Andrew Nii Anang, Peter Ofuje Obidi, Adeleye Oriola Mesogboriwon, James Opani Obidi, Maurice kuubata, and Dabira Ogunbiyi, THE role of Artificial Intelligence in industry 5.0: Enhancing human-machine collaboration, Adv. Res. Rev., 24 (2024) 380-400. https://doi.org/10.30574/wjarr.2024.24.2.3369
  6. A. Kumar, Parveen, Y. Liu, and R. Kumar, Handbook of Intelligent and Sustainable Manufacturing, Boca Raton: CRC Press, 2024. https://doi.org/10.1201/9781003405870
  7. D. Oyekunle, U. O. Matthew, K. M. Bakare, L. O. Fatai, and O. Asuni, Industry 5.0: A Paradigm Shift Towards Sustainability, Adaptability and Human-Centeredness, in Proceedings of the 12th IPMA Research Conference Project Management in the Age of Artificial Intelligence, International Project Management Association -IPMA, IPMA USA, 2024, 119-134. https://doi.org/10.56889/mxee1654
  8. N. Shen, H. You, J. Li, and P. Song, Real-time trajectory planning for collaborative robots using incremental multi-objective optimization, Intell. Serv. Robot., 18 (2024) 43-59. https://doi.org/10.1007/s11370-024-00555-0
  9. J. Singh and K. K. Verma, Industry 4.0 to Industry 5.0: A Paradigm Shift towards Sustainable and Human Centric Production, Commer. Res. Rev., 1 (2024) 68-75. https://doi.org/10.21844/crr.v1i02.1114
  10. A. Kusiak, Smart Manufacturing, Springer Handbook of Automation. Springer Handbooks. Springer, Cham, 2023. https://doi.org/10.1007/978-3-030-96729-1_45
  11. M. Golovianko, V. Terziyan, V. Branytskyi, and D. Malyk, Industry 4.0 vs. Industry 5.0: Co-existence, Transition, or a Hybrid, Procedia. Comput. Sci., 217 (2023) 102-113. https://doi.org/10.1016/j.procs.2022.12.206
  12. A. Z. Md Nuruzzaman Abir, Industry 4.0 Technologies for a Data-Driven, Secure, Green and Circular Manufacturing Economy, in 2024 IEEE Green Technologies Conference (GreenTech), IEEE, Apr., 2024, 26-31. https://doi.org/10.1109/GreenTech58819.2024.10520440
  13. J. Leng, W. Sha, B. Wang, P. Zheng, C. Zhuang, et al., Industry 5.0: Prospect and retrospect, J. Manuf. Syst., 65 (2022) 279-295. https://doi.org/10.1016/j.jmsy.2022.09.017
  14. M. C. Marica, N. Bizon, I. Bostan, and M. C. Enescu, A Brief Review of Industry 5.0: Key Technologies, Applications, and Future Perspectives, in 2024 16th International Conference on Electronics, Computers and Artificial Intelligence (ECAI), IEEE, 2024, 1-6. https://doi.org/10.1109/ECAI61503.2024.10607446
  15. M. Khan, A. Haleem, and M. Javaid, Changes and improvements in Industry 5.0: A strategic approach to overcome the challenges of Industry 4.0, Green Technol. and Sustain., 1 (2023) 100020. https://doi.org/10.1016/j.grets.2023.100020
  16. M. Ciccarelli, A. Papetti, and M. Germani, Exploring how new industrial paradigms affect the workforce: A literature review of Operator 4.0., J. Manuf. Syst., 70 (2023) 464-483. https://doi.org/10.1016/j.jmsy.2023.08.016
  17. S. Saniuk, S. Grabowska, and A. Thibbotuwawa, Challenges of industrial systems in terms of the crucial role of humans in the Industry 5.0 environment, Prod. Eng. Arch., 30 (2024) 94-104. https://doi.org/10.30657/pea.2024.30.9
  18. D. Verma, Industry 5.0: A Human-Centric and Sustainable Approach to Industrial Development, Int. J. Soc. Res., 12 (2024) 17-21. https://doi.org/10.26821/IJSRC.12.5.2024.120507
  19. R. Wolniak, Industry 5.0-characteristic, main principles, advantages and disadvantages, Scientific Papers of Silesian University of Technology, Organ. Manag. J., (2023) 663-678. https://doi.org/10.29119/1641-3466.2023.170.40
  20. A. Huang, M. Triebe, Z. Li, H. Wu, B. G. Joung, and J. W. Sutherland, A review of research on smart manufacturing in support of environmental sustainability, Int. J. Sustain. Manuf., 5 (2022) 132-163. https://doi.org/10.1504/IJSM.2022.134556
  21. A. Jamwal, R. Agrawal, M. Sharma, and A. Giallanza, Industry 4.0 Technologies for Manufacturing Sustainability: A Systematic Review and Future Research Directions, Appl. Sci., 11 (2021) 5725. https://doi.org/10.3390/app11125725
  22. S. Modgil, R. K. Singh, and C. Hannibal, Artificial intelligence for supply chain resilience: learning from Covid-19, The Int. J. Logist. Manag., 33 (2022) 1246-1268. https://doi.org/10.1108/IJLM-02-2021-0094
  23. M. G. Cardoso, E. Ares, L. P. Ferreira, and G. Peláez, The Use of Simulation and Artificial Intelligence as a Decision Support Tool for Sustainable Production Lines, Adv. in Sci. and Technol., 132 (2023) 405-412. https://doi.org/10.4028/p- Cv6rt1
  24. F. Dos Santos, L. Costa, and L. Varela, Multiobjective Optimization in Distributed Industry and Environmental Sustainability: a Systematic Literature Review, Rev. Ang. de Ciênc., 5 (2023) e050210. https://doi.org/10.54580/R0502.10
  25. B. Sarkar, M. Omair, and S.-B. Choi, A Multi-Objective Optimization of Energy, Economic, and Carbon Emission in a Production Model under Sustainable Supply Chain Management, Appl. Sci., 8 (2018) 1744. https://doi.org/10.3390/app8101744
  26. D. Hariyani, P. Hariyani, S. Mishra, and M. Kumar Sharma, Leveraging digital technologies for advancing circular economy practices and enhancing life cycle analysis: A systematic literature review, Waste Manag. Bull., 2 (2024) 69-83. https://doi.org/10.1016/j.wmb.2024.06.007
  27. K. A. Demir, G. Döven, and B. Sezen, Industry 5.0 and Human-Robot Co-working, Procedia Comput Sci., 158 (2019) 688- 695. https://doi.org/10.1016/j.procs.2019.09.104
  28. F. Yang, M. S. Habibullah, T. Zhang, Z. Xu, P. Lim, and S. Nadarajan, Health Index-Based Prognostics for Remaining Useful Life Predictions in Electrical Machines, IEEE Transactions on Industrial Electronics, 63 (2016) 2633-2644. https://doi.org/10.1109/TIE.2016.2515054
  29. M.-L. Siikonen, Current and future trends in vertical transportation, Eur. J. Oper. Res., 319 (2024) 361-372. https://doi.org/10.1016/j.ejor.2024.05.016
  30. J. F. Arinez, Q. Chang, R. X. Gao, C. Xu, and J. Zhang, Artificial Intelligence in Advanced Manufacturing: Current Status and Future Outlook, J. Manuf. Sci. Eng., 142 (2020). https://doi.org/10.1115/1.4047855
  31. M. M. Adrita, A. Brem, D. O'Sullivan, E. Allen, and K. Bruton, Methodology for Data-Informed Process Improvement to Enable Automated Manufacturing in Current Manual Processes, Appl. Sci., 11 (2021) 3889. https://doi.org/10.3390/app11093889
  32. P. Mijović, E. Giagloglou, P. Todorović, I. Mačužić, B. Jeremić, and I. Gligorijević, A Tool for Neuroergonomic Study of Repetitive Operational Tasks, in Proceedings of the 2014 European Conference on Cognitive Ergonomics, New York, NY, USA: ACM, 2014, 1-2. https://doi.org/10.1145/2637248.2637280
  33. M. M. Bennett, D. L. Oswald, and A. S. Kaugars, Unveiling the Relationships Between Household Labor and Maternal Well-Being, J. Community Appl. Soc. Psychol., 34 (2024) e70019. https://doi.org/10.1002/casp.70019
  34. S. Rosenkranz, D. Staegemann, M. Volk, and K. Turowski, Explaining the Business-Technological Age of Legacy Information Systems, IEEE Access, 12 (2024) 84579-84611. https://doi.org/10.1109/ACCESS.2024.3414377
  35. A. Haleem, M. Javaid, and R. P. Singh, Encouraging Safety 4.0 to enhance industrial culture: An extensive study of its technologies, roles, and challenges, Green Technol. and Sustain., 3 (2025) 100158. https://doi.org/10.1016/j.grets.2024.100158
  36. W. C. Jordan and S. C. Graves, Principles on the Benefits of Manufacturing Process Flexibility, Manage Sci., 41 (1995) 577-594. https://doi.org/10.1287/mnsc.41.4.577
  37. A. Realyvásquez-Vargas, K. C. Arredondo-Soto, T. Carrillo-Gutiérrez, and G. Ravelo, Applying the Plan-Do-Check-Act (PDCA) Cycle to Reduce the Defects in the Manufacturing Industry. A Case Study, Appl. Sci., 8 (2018) 2181. https://doi.org/10.3390/app8112181
  38. M. Singh and S. A. L. Ali Khan, Advances in Autonomous Robotics: Integrating AI and Machine Learning for Enhanced Automation and Control in Industrial Applications., Int. J. Mult. Res. Perspectives, 2 (2024) 74-90. https://doi.org/10.61877/ijmrp.v2i4.135
  39. M. R. Mia and J. Shuford, Exploring the Synergy of Artificial Intelligence and Robotics in Industry 4.0 Applications, J. Artif. Intell. Gen. Sci., 1 (2024). https://doi.org/10.60087/jaigs.v1i1.31
  40. K. Muthukumar, S. Janardhan, and R. Rajiev, A study on work place health and safety aspects in manufacturing industry, AIP Conference Proceedings: the International Conference on Materials, Manufacturing and Machining, 2128, 2019, 050017. https://doi.org/10.1063/1.5117989
  41. G.-B. Xiao, P. G. Dempsey, L. Lei, Z.-H. Ma, and Y.-X. Liang, Study on Musculoskeletal Disorders in a Machinery Manufacturing Plant, J. Occup. Environ. Med., 46 (2004) 341-346. https://doi.org/10.1097/01.jom.0000121153.55726.95
  42. Deros, Work-Related Musculoskeletal Disorders among Workers' Performing Manual Material Handling Work in an Automotive Manufacturing Company, Am. J. Appl. Sci., 7 (2010) 1087-1092. https://doi.org/10.3844/ajassp.2010.1087.1092
  43. Addula, S. R., and A. K. Tyagi. 2024. Future of Computer Vision and Industrial Robotics in Smart Manufacturing, in Artificial Intelligence-Enabled Digital Twin for Smart Manufacturing, Wiley, 505-539. https://doi.org/10.1002/9781394303601.ch22
  44. R. Didwania, R. Verma, and N. Dhanda, Application of Robotics in Manufacturing Industry," in Machine Vision and Industrial Robotics in Manufacturing, Boca Raton: CRC Press, 2024. https://doi.org/10.1201/9781003438137-4
  45. T. Cadete, V. H. Pinto, J. Lima, G. Gonçalves, and P. Costa, Dynamic AMR Navigation: Simulation with Trajectory Prediction of Moving Obstacles, in 2024 7th Iberian Robotics Conference (ROBOT), IEEE, 2024, 1-7. https://doi.org/10.1109/ROBOT61475.2024.10797420
  46. M. Raisul Islam et al., Deep Learning and Computer Vision Techniques for Enhanced Quality Control in Manufacturing Processes, IEEE Access, 12 (2024) 121449-121479. https://doi.org/10.1109/ACCESS.2024.3453664
  47. J. Yeshwanth, Cyber Physical Echoes -Harnessing Digital Twin Intelligence for Real Time System Optimization, Int. J. Sci. Res. Eng. Manag., 8 (2024) 1-7. https://doi.org/10.55041/IJSREM38489
  48. M. Homaei, Ó. M. Gutiérrez, J. C. Sancho, M. Ávila, A. Caro, A review of digital twins and their application in cybersecurity based on artificial intelligence, Artif. Intell. Rev., 57 (2024) 201. https://doi.org/10.1007/s10462-024-10805-3
  49. A. I. Khan, Utilizing Data Analytics for Predictive Maintenance in Manufacturing: A Systematic Review on Achieving Operational Excellence, Innov. Eng. J., 1 (2024) 56-67. https://doi.org/10.70937/itej.v1i01.7
  50. D.-A. Andrioaia and V. G. Gaitan, A specialty literature review of the predictive maintenance systems, J. Eng. Stud. Res., 29 (2024) 17-23. https://doi.org/10.29081/jesr.v29i4.002
  51. P. Jain, Prof. N. Pateria, Prof. G. Anjum, A. Tiwari, and A. Tiwari, Edge AI and On-Device Machine Learning For Real Time Processing, Int. J. Innovative Res. Comp. Communication Eng., 12 (2023) 8137-8146. https://doi.org/10.15680/IJIRCCE.2024.1205364
  52. S. Parab, Enhancing Human-Robot Interaction through Voice-Driven Natural Language Processing System, In.t J. Res. Appl. Sci. Eng. Technol., 12 (2024) 820-824. https://doi.org/10.22214/ijraset.2024.65921
  53. Y. Kim, D. Kim, J. Choi, J. Park, N. Oh, and D. Park, A survey on integration of large language models with intelligent robots, Intell. Serv. Robot., 17 (2024) 1091-1107. https://doi.org/10.1007/s11370-024-00550-5
  54. Sachkirat Singh Pardesi, Integrating Hyper-Automation with RPA and AI for End-to-End Business Process Optimization, Darpan Int. Res. Anal., 12 (2024) 199-211. https://doi.org/10.36676/dira.v12.i3.67
  55. M. Nandipati, O. Fatoki, and S. Desai, Bridging Nanomanufacturing and Artificial Intelligence-A Comprehensive Review, Materials, 17 (2024) 1621. https://doi.org/10.3390/ma17071621
  56. S. V. Izanker, A. Dhole, and P. Kumar, Navigating the Nexus: Exploring the Fusion of AI and Nanotechnology for Cutting- Edge Advances, in 2023 1st DMIHER International Conference on Artificial Intelligence in Education and Industry 4.0 (IDICAIEI), IEEE, 2023, 1-5. https://doi.org/10.1109/IDICAIEI58380.2023.10406387
  57. R. A. Adebayo, N. C. Obiuto, O. K. Olajiga, and I. C. Festus-Ikhuoria, AI-enhanced manufacturing robotics: A review of applications and trends, World J. Adv. Res. Rev., 21 (2023) 2060-2072. https://doi.org/10.30574/wjarr.2024.21.3.0924
  58. S. Nadaf, AI for Predictive Maintenance in Industries, Int. J. Res. Appl. Sci. Eng. Technol., 12 (2024) 2013-2017. https://doi.org/10.22214/ijraset.2024.63442
  59. O. Okuyelu and O. Adaji, AI-Driven Real-time Quality Monitoring and Process Optimization for Enhanced Manufacturing Performance, J. Adv. Math. Comput. Sci., 39 (2024) 81-89. https://doi.org/10.9734/jamcs/2024/v39i41883
  60. N. Gramegna, F. Greggio, and F. Bonollo, Smart Factory Competitiveness Based on Real Time Monitoring and Quality Predictive Model Applied to Multi-stages Production Lines, IFIP International Conference on Advances in Production Management Systems 2020, 185-196. https://doi.org/10.1007/978-3-030-57997-5_22
  61. B. Ferreira and J. Reis, A Systematic Literature Review on the Application of Automation in Logistics, Logistics, 7 (2023) 80. https://doi.org/10.3390/logistics7040080
  62. R. Benotsmane, G. Kovács, and L. Dudás, Economic, Social Impacts and Operation of Smart Factories in Industry 4.0 Focusing on Simulation and Artificial Intelligence of Collaborating Robots, Soc. Sci., 8 (2019) 143. https://doi.org/10.3390/socsci8050143
  63. S. Sundaram and A. Zeid, Artificial Intelligence-Based Smart Quality Inspection for Manufacturing, Micromachines, 14 (2023) 570. https://doi.org/10.3390/mi14030570
  64. X. Li, R. Athinarayanan, B. Wang, W. Yuan, Q. Zhou, et al., Smart Reconfigurable Manufacturing: Literature Analysis, Procedia CIRP, 121 (2024) 43-48. https://doi.org/10.1016/j.procir.2023.09.228
  65. I. A. Shah and S. Mishra, Artificial intelligence in advancing occupational health and safety: an encapsulation of developments, J. Occup. Health, 66 (2024). https://doi.org/10.1093/joccuh/uiad017
  66. D. Gavade, AI-driven process automation in manufacturing business administration: efficiency and cost-efficiency analysis, IET Conference Proceedings, 2023, 677-684. https://doi.org/10.1049/icp.2024.1038
  67. M. Shiomi, M. Kakio, and T. Miyashita, Who Should Speak? Voice Cue Design for a Mobile Robot Riding in a Smart Elevator, 33rd IEEE International Conference on Robot and Human Interactive Communication (ROMAN), 2024, 2023- 2028. https://doi.10.1109/RO-MAN60168.2024.10731193
  68. H. Gebauer, B. Edvardsson, A. Gustafsson, and L. Witell, Match or Mismatch: Strategy-Structure Configurations in the Service Business of Manufacturing Companies, J. Serv. Res., 13 (2010) 198-215. https://doi.org/10.1177/1094670509353933
  69. M.-L. Siikonen, Planning and Control Models for Elevators in High-Rise Buildings, Helsinki University of Technology, Systems Analysis Laboratory, Research Reports, A68 ,1997.
  70. A. Kusiak, Smart manufacturing, Int. J. Prod. Res., 56 (2018) 508-517. https://doi.org/10.1080/00207543.2017.1351644
  71. J. Grezmak, P. Wang, C. Sun, and R. X. Gao, Explainable Convolutional Neural Network for Gearbox Fault Diagnosis, Procedia, 80 (2019) 476-481. https://doi.org/10.1016/j.procir.2018.12.008
  72. C. Liu, Z. J. Kong, S. Babu, C. Joslin, and J. Ferguson, An integrated manifold learning approach for high-dimensional data feature extractions and its applications to online process monitoring of additive manufacturing, IISE Trans., 53 (2021) 1215- 1230. https://doi.org/10.1080/24725854.2020.1849876
  73. R. S. Aboul-Yazeed, A. El-Bialy, and A. S. A. Mohamed, Medical Equipment Failure Rate Analysis Using Supervised Machine Learning, The International Conference on Advanced Machine Learning Technologies and Applications, 2018, 319-327. https://doi.org/10.1007/978-3-319-74690-6_32
  74. K. Abdelli, D. Rafique, and S. Pachnicke, Machine Learning Based Laser Failure Mode Detection, 21st International Conference on Transparent Optical Networks, IEEE, 2019, 1-4. https://doi.org/10.1109/ICTON.2019.8840267
  75. E. A. B. de Moraes, H. Salehi, and M. Zayernouri, Data-driven failure prediction in brittle materials: a phase field-based machine learning framework, J. Mach. Learn. Model. Comput., 2 (2021) 65-89. https://doi.org/10.1615/JMachLearnModelComput.2021034062
  76. X. Fan, X. Wang, X. Zhang, and X. (Bill) Yu, Machine learning based water pipe failure prediction: The effects of engineering, geology, climate and socio-economic factors, Reliab. Eng. Syst. Saf., 219 (2022) 108185. https://doi.org/10.1016/j.ress.2021.108185
  77. S. Munirathinam, Industry 4.0: Industrial Internet of Things (IIOT), Adv. Comput., 117 (2020) 129-164. https://doi.org/10.1016/bs.adcom.2019.10.010
  78. B. T. Thumati, H. S. Subramania, R. Shastri, K. K. Kumar; N. Hessner, Large-scale Data Integration for Facilities Analytics: Challenges and Opportunities, in 2020 IEEE International Conference on Big Data, 2020, 3532-3538. https://doi.org/10.1109/BigData50022.2020.9378440
  79. J. O. Olurin, F. Okonkwo, T. Eleogu, O. O. James, N. L. Eyo-Udo, and R. E. Daraojimba, Strategic HR Management in the Manufacturing Industry: Balancing Automation and Workforce Development, Int. J. Res. Sci. Innovation, X (2024) 380-401. https://doi.org/10.51244/IJRSI.2023.1012030
  80. A. L. Zolkin, T. G. Aygumov, A. I. Adzhieva, A. S. Bityutskiy, and Yu. N. Koval, Analysis of the integration of robotic automation in production, AIP Conference Proceedings, from the V International Scientific Conference on Advanced Technologies in Aerospace, Mechanical and Automation Engineering, 3102, 2024, 030007. https://doi.org/10.1063/5.0199949
  81. H. Figueroa, Y. Wang, and G. C. Giakos, Adversarial Attacks in Industrial Control Cyber Physical Systems, IEEE International Conference on Imaging Systems and Techniques (IST), IEEE International Conference on Imaging Systems and Techniques (IST), 2022, 1-6. https://doi.org/10.1109/IST55454.2022.9827763
  82. J. Harmatos and M. Maliosz, Architecture Integration of 5G Networks and Time-Sensitive Networking with Edge Computing for Smart Manufacturing, Electronics, 10 (2021) 3085. https://doi.org/10.3390/electronics10243085
  83. K. A. Demir, G. Döven, and B. Sezen, Industry 5.0 and Human-Robot Co-working, Procedia Comput. Sci., 158 (2019) 688- 695. https://doi.org/10.1016/j.procs.2019.09.104
  84. Y. Lu, H. Huang, C. Liu, and X. Xu, Standards for Smart Manufacturing: A review, IEEE 15th International Conference on Automation Science and Engineering (CASE), 2019, 73-78. https://doi.org/10.1109/COASE.2019.8842989