Academia.eduAcademia.edu

Outline

Dynamical Properties of Gaussian Thermostats

2013, arXiv (Cornell University)

References (30)

  1. GALLAVOTTI, G. New methods in nonequilibrium gases and fluids Open Sys Information Dynamics 6 (1999) 101-136.
  2. RUELLE, D. Smooth dynamics and new theoretical ideas in nonequilibrium statistical me- chanics. J. Stat Physics 95 (1999)393 -468.
  3. GALLAVOTTI, G; RUELLE, D. SRB states and nonequilibrium statistical mechanics close to equilibrium. Commum. Math. Physics. 190 (1997) 279-285.
  4. ABRAHAM, R; Robbin, J. Transversal Mappings and Flows. W.A. Bejamin, New York, 1967.
  5. ANOSOV, D. On generic properties of closed geodesics. Math USSR Izvestiya, vol 21, 1983.
  6. ARROYO, A; RODRIGUEZ HERTZ. Homoclinic bifurcations and uniform hiperbolicity for three-dimensional flows. Annales Institut Henri Poincaré, 805-841, 2003.
  7. BIRKHOFF, G. Dynamical Systems. American Mathematical Society. 1966.
  8. BONATTI, C; DÍAZ, L.J; PUJALS, E. R. A C 1 -generic dichotomy for diffeomorfims: Weak forms of hyperbolicity or infinitely many sinks or sources. Annals of Mathematics, 355-418, 2003.
  9. BONATTI, C; VIANA, M. SRB measures for partially hyperbolic systems whose central direction is mostly contracting. Israel J. of Math, Volume 115, 157-193, 2000.
  10. CONTRERAS, G. Geodesic Flows with positive topological entropy, twist maps and hyper- bolicity. Annals of Mathematics, Volume 172, 761-808, 2010.
  11. CONTRERAS, G; Oliveira. F. C 2 Densely the 2-sphere has an elliptic closed geodesic. Ergodic Theory and Dynamical Systems, 24, 1395-1423, 2004.
  12. DETTMANN, C.P, MORRIS, G.P. Hamiltonian formulation of the Gaussian Isokinetic ther- mostat. Phys Rev. E 54 (1996), 2495 -2500.
  13. FOLLAND, G. Weyl Manifolds. J. Differential Geometry, Volume 4, 145-153, 1970.
  14. FRANKS, J. Necessary conditions for stability of diffeomorphisms. Trans. Am. Math. Soc, 158, 301 -308, 1971.
  15. HOOVER, W.G.. Molecular Dynamics. Lecture Notes in Physics 258, Springer, 1986.
  16. HORITA, V. ; TAHZIBI, A. . Partial Hyperbolicity for Symplectic Diffeomorphisms. Annales de l Institut Henri Poincaré. Analyse non Linéaire, v. 23, p. 641-661, 2006.
  17. LAUB, A; MEYER, K. Canonical Forms for Symplectic and Hamiltonian Matrices. Celestial Mechanics. 213-238, 1974.
  18. LIVERANI, C; WOJTOWSKI, M. Conformally Symplectic Dynamics and symmetry of the Lyapunov Spectrum. Communications in Mathematical Physics, Volume 194, Number 1, 47-60, May 1998.
  19. MAÑÉ, R. An ergodic clossing lemma, Ann. of Math. 116 (1982), 503-540.
  20. MAÑÉ, R. On a theorem of Klingenberg. Dynamical Systems and Bifurcation theory, 319- 345, 1985.
  21. MIRANDA, Jose Antonio G. Generic properties for magnetic flows on surfaces. Nonlinearity, 19, p. 1849-1874, 2006.
  22. PALIS, J; DE MELO, W. Geometry Theory of Dynamical Systems: An Introduction. New York: Springer-Verlag, 1981.
  23. PRZYTYCKI, PIOTR; WOJTKOWSKI, MACIEJ P. Gaussian thermostats as geodesic flows of nonsymmetric linear connections. Comm. Math. Phys. 277 (2008), no. 3, 759-769.
  24. PUJALS, E. R; SAMBARINO, M. Homoclinic tangencies and hyperbolicity for surface dif- feomorphisms, Annals of math 151 (2000), 961-1023.
  25. PUJALS, E; SAMBARINO, M. On the dynamics of dominated splitting. Annals of Mathe- matics, 657-740, 2009.
  26. ROBINSON, C. Generic properties of Conservative Systems. American Journal of Mathe- matics, Vol 92, N 3, 562-603, 1970.
  27. RUELLE, D. Smoth Dynamics and new Theoretical Ideas in Nonequilibrium Statistical Mechanics. Journal of Statistical Physics, Vol 95, N 1/2, 1999.
  28. WOJTKOWSKI, MACIEJ P. Rigidity of some Weyl manifolds with nonpositive sectional curvature. Proc. Amer. Math. Soc. 133 (2005), no. 11, 3395-3402.
  29. WOJTKOWSKI, MACIEJ P. Weyl manifolds and Gaussian thermostats. Proceedings of the International Congress of Mathematicians, Vol. III (Beijing, 2002), 511-523, Higher Ed. Press, Beijing, 2002.
  30. WOJTKOWSKI, MACIEJ P. W-flows on Weyl manifolds and Gaussian thermostats. J. Math. Pures Appl. (9) 79 (2000), no. 10, 953-974.