Dynamical Properties of Gaussian Thermostats
2013, arXiv (Cornell University)
References (30)
- GALLAVOTTI, G. New methods in nonequilibrium gases and fluids Open Sys Information Dynamics 6 (1999) 101-136.
- RUELLE, D. Smooth dynamics and new theoretical ideas in nonequilibrium statistical me- chanics. J. Stat Physics 95 (1999)393 -468.
- GALLAVOTTI, G; RUELLE, D. SRB states and nonequilibrium statistical mechanics close to equilibrium. Commum. Math. Physics. 190 (1997) 279-285.
- ABRAHAM, R; Robbin, J. Transversal Mappings and Flows. W.A. Bejamin, New York, 1967.
- ANOSOV, D. On generic properties of closed geodesics. Math USSR Izvestiya, vol 21, 1983.
- ARROYO, A; RODRIGUEZ HERTZ. Homoclinic bifurcations and uniform hiperbolicity for three-dimensional flows. Annales Institut Henri Poincaré, 805-841, 2003.
- BIRKHOFF, G. Dynamical Systems. American Mathematical Society. 1966.
- BONATTI, C; DÍAZ, L.J; PUJALS, E. R. A C 1 -generic dichotomy for diffeomorfims: Weak forms of hyperbolicity or infinitely many sinks or sources. Annals of Mathematics, 355-418, 2003.
- BONATTI, C; VIANA, M. SRB measures for partially hyperbolic systems whose central direction is mostly contracting. Israel J. of Math, Volume 115, 157-193, 2000.
- CONTRERAS, G. Geodesic Flows with positive topological entropy, twist maps and hyper- bolicity. Annals of Mathematics, Volume 172, 761-808, 2010.
- CONTRERAS, G; Oliveira. F. C 2 Densely the 2-sphere has an elliptic closed geodesic. Ergodic Theory and Dynamical Systems, 24, 1395-1423, 2004.
- DETTMANN, C.P, MORRIS, G.P. Hamiltonian formulation of the Gaussian Isokinetic ther- mostat. Phys Rev. E 54 (1996), 2495 -2500.
- FOLLAND, G. Weyl Manifolds. J. Differential Geometry, Volume 4, 145-153, 1970.
- FRANKS, J. Necessary conditions for stability of diffeomorphisms. Trans. Am. Math. Soc, 158, 301 -308, 1971.
- HOOVER, W.G.. Molecular Dynamics. Lecture Notes in Physics 258, Springer, 1986.
- HORITA, V. ; TAHZIBI, A. . Partial Hyperbolicity for Symplectic Diffeomorphisms. Annales de l Institut Henri Poincaré. Analyse non Linéaire, v. 23, p. 641-661, 2006.
- LAUB, A; MEYER, K. Canonical Forms for Symplectic and Hamiltonian Matrices. Celestial Mechanics. 213-238, 1974.
- LIVERANI, C; WOJTOWSKI, M. Conformally Symplectic Dynamics and symmetry of the Lyapunov Spectrum. Communications in Mathematical Physics, Volume 194, Number 1, 47-60, May 1998.
- MAÑÉ, R. An ergodic clossing lemma, Ann. of Math. 116 (1982), 503-540.
- MAÑÉ, R. On a theorem of Klingenberg. Dynamical Systems and Bifurcation theory, 319- 345, 1985.
- MIRANDA, Jose Antonio G. Generic properties for magnetic flows on surfaces. Nonlinearity, 19, p. 1849-1874, 2006.
- PALIS, J; DE MELO, W. Geometry Theory of Dynamical Systems: An Introduction. New York: Springer-Verlag, 1981.
- PRZYTYCKI, PIOTR; WOJTKOWSKI, MACIEJ P. Gaussian thermostats as geodesic flows of nonsymmetric linear connections. Comm. Math. Phys. 277 (2008), no. 3, 759-769.
- PUJALS, E. R; SAMBARINO, M. Homoclinic tangencies and hyperbolicity for surface dif- feomorphisms, Annals of math 151 (2000), 961-1023.
- PUJALS, E; SAMBARINO, M. On the dynamics of dominated splitting. Annals of Mathe- matics, 657-740, 2009.
- ROBINSON, C. Generic properties of Conservative Systems. American Journal of Mathe- matics, Vol 92, N 3, 562-603, 1970.
- RUELLE, D. Smoth Dynamics and new Theoretical Ideas in Nonequilibrium Statistical Mechanics. Journal of Statistical Physics, Vol 95, N 1/2, 1999.
- WOJTKOWSKI, MACIEJ P. Rigidity of some Weyl manifolds with nonpositive sectional curvature. Proc. Amer. Math. Soc. 133 (2005), no. 11, 3395-3402.
- WOJTKOWSKI, MACIEJ P. Weyl manifolds and Gaussian thermostats. Proceedings of the International Congress of Mathematicians, Vol. III (Beijing, 2002), 511-523, Higher Ed. Press, Beijing, 2002.
- WOJTKOWSKI, MACIEJ P. W-flows on Weyl manifolds and Gaussian thermostats. J. Math. Pures Appl. (9) 79 (2000), no. 10, 953-974.