Relativistic Algebra over Finite Ring Continuum
2025, Preprints
https://doi.org/10.20944/PREPRINTS202505.2118.V5Abstract
We present a formal reconstruction of the conventional number systems, including integers, rationals, reals, and complex numbers, based on the principle of relational finitude over a finite field F đ. Rather than assuming actual infinity, we define arithmetic and algebra as observer-dependent constructs grounded in finite field symmetries. Conventional number classes are then reinterpreted as pseudo-numbers, expressed relationally with respect to a chosen reference frame. We define explicit mappings for each number class, preserving their algebraic and computational properties while eliminating ontological dependence on infinite structures. The resultant framework-that we denote as Finite Ring Continuum-establishes a coherent foundation for mathematics, physics and formal logic in ontologically finite paradox-free informational universe.
References (34)
- Saunders Mac Lane. Categories for the Working Mathematician. Springer, 1998.
- Albert Einstein. On the electrodynamics of moving bodies. Annalen der Physik, 17:891-921, 1905.
- Emmy Noether. Invariante Variationsprobleme. Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse, pages 235-257, 1918.
- Yosef Akhtman. Existence, complexity and truth in a finite universe. Preprints, May 2025. URL: https://www.preprints.org/manuscript/202505.1779/v2.
- Lee Smolin. Time Reborn: From the Crisis in Physics to the Future of the Universe. Houghton Mifflin Harcourt, 2013.
- Lee Smolin. The Trouble with Physics: The Rise of String Theory, the Fall of a Science, and What Comes Next. Houghton Mifflin Harcourt, 2006.
- Giacomo Mauro D'Ariano. Physics without physics: The power of information-theoretical principles. International Journal of Theoretical Physics, 56(1):97-128, 2017.
- Vieri Benci and Mauro Di Nasso. Numerosities of labelled sets: A new way of counting. Advances in Mathematics, 173(1):50-67, 2003.
- Vieri Benci and Mauro Di Nasso. A theory of ultrafinitism. Notre Dame Journal of Formal Logic, 52(3):229-247, 2011.
- A. S. Yessenin-Volpin. The ultra-intuitionistic criticism and the antitraditional program for foun- dations of mathematics. Proceedings of the International Congress of Mathematicians, pages 234-250, 1960.
- Rohit J. Parikh. Existence and feasibility in arithmetic. Journal of Symbolic Logic, 36(3):494-508, 1971.
- Vladimir Yu. Sazonov. On feasible numbers. Logic and Computational Complexity, pages 30-51, 1997.
- Arnon Avron. The semantics and proof theory of linear logic. Theoretical Computer Science, 294(1-2):3-67, 2001.
- L. E. J. Brouwer. On the Foundations of Mathematics. Springer, 1927.
- Hermann Weyl. Philosophy of Mathematics and Natural Science. Princeton University Press, 1949.
- Gregory Chaitin. Thinking about Gödel and Turing: Essays on complexity, 1970-2007. World Scientific, 2007.
- Seth Lloyd. Ultimate Physical Limits to Computation. Nature, 2000.
- Yosef Akhtman. Geometry and constants in finite ring continuum. Preprints, June 2025. URL: https://www.preprints.org/manuscript/202505.2112/v3.
- Yosef Akhtman. Finite ring continuum at composite cardinalities. Preprints, June 2025. URL: https://www.preprints.org/manuscript/202506.0697/v1.
- David M. Burton. Elementary Number Theory. McGraw-Hill, 7th edition, 2010.
- David S. Dummit and Richard M. Foote. Abstract Algebra. John Wiley & Sons, 3rd edition, 2004.
- Michael Artin. Algebra. Pearson, 2nd edition, 2011.
- Donald E. Knuth. The Art of Computer Programming, Volume 1: Fundamental Algorithms. Addison-Wesley, 3rd edition, 1997.
- Jean-Pierre Serre. Local Fields, volume 67 of Graduate Texts in Mathematics. Springer, New York, 1979.
- Alan M. Turing. On computable numbers, with an application to the entscheidungsproblem. Proceedings of the London Mathematical Society, 42(1):230-265, 1936.
- Gabriel Lamé. Mémoire sur la résolution des équations numériques. Comptes Rendus de l'Académie des Sciences, 19:867-872, 1844.
- Walter Rudin. Principles of Mathematical Analysis. McGraw-Hill, New York, 3rd edition, 1976.
- Kenneth G Wilson. Renormalization group and critical phenomena. i. renormalization group and the kadanoff scaling picture. Physical Review B, 4(9):3174-3183, 1971.
- John Cardy. Scaling and renormalization in statistical physics. Cambridge University Press, 1996.
- Jon Barwise and John Perry. Situations and Attitudes. MIT Press, 1985.
- Robert P. Langlands. Problems in the Theory of Automorphic Forms. Springer-Verlag, 1970.
- Armand Borel. Automorphic Forms on Reductive Groups. Springer-Verlag, 1979.
- V. G. Drinfeld. Elliptic modules. Mathematics of the USSR-Sbornik, 23(4):561-592, 1974.
- Laurent Lafforgue. Chtoucas de drinfeld et correspondance de langlands. Inventiones mathematicae, 147(1):1-241, 2002.