Academia.eduAcademia.edu

Outline

Relativistic Algebra over Finite Ring Continuum

2025, Preprints

https://doi.org/10.20944/PREPRINTS202505.2118.V5

Abstract

We present a formal reconstruction of the conventional number systems, including integers, rationals, reals, and complex numbers, based on the principle of relational finitude over a finite field F 𝑝. Rather than assuming actual infinity, we define arithmetic and algebra as observer-dependent constructs grounded in finite field symmetries. Conventional number classes are then reinterpreted as pseudo-numbers, expressed relationally with respect to a chosen reference frame. We define explicit mappings for each number class, preserving their algebraic and computational properties while eliminating ontological dependence on infinite structures. The resultant framework-that we denote as Finite Ring Continuum-establishes a coherent foundation for mathematics, physics and formal logic in ontologically finite paradox-free informational universe.

References (34)

  1. Saunders Mac Lane. Categories for the Working Mathematician. Springer, 1998.
  2. Albert Einstein. On the electrodynamics of moving bodies. Annalen der Physik, 17:891-921, 1905.
  3. Emmy Noether. Invariante Variationsprobleme. Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse, pages 235-257, 1918.
  4. Yosef Akhtman. Existence, complexity and truth in a finite universe. Preprints, May 2025. URL: https://www.preprints.org/manuscript/202505.1779/v2.
  5. Lee Smolin. Time Reborn: From the Crisis in Physics to the Future of the Universe. Houghton Mifflin Harcourt, 2013.
  6. Lee Smolin. The Trouble with Physics: The Rise of String Theory, the Fall of a Science, and What Comes Next. Houghton Mifflin Harcourt, 2006.
  7. Giacomo Mauro D'Ariano. Physics without physics: The power of information-theoretical principles. International Journal of Theoretical Physics, 56(1):97-128, 2017.
  8. Vieri Benci and Mauro Di Nasso. Numerosities of labelled sets: A new way of counting. Advances in Mathematics, 173(1):50-67, 2003.
  9. Vieri Benci and Mauro Di Nasso. A theory of ultrafinitism. Notre Dame Journal of Formal Logic, 52(3):229-247, 2011.
  10. A. S. Yessenin-Volpin. The ultra-intuitionistic criticism and the antitraditional program for foun- dations of mathematics. Proceedings of the International Congress of Mathematicians, pages 234-250, 1960.
  11. Rohit J. Parikh. Existence and feasibility in arithmetic. Journal of Symbolic Logic, 36(3):494-508, 1971.
  12. Vladimir Yu. Sazonov. On feasible numbers. Logic and Computational Complexity, pages 30-51, 1997.
  13. Arnon Avron. The semantics and proof theory of linear logic. Theoretical Computer Science, 294(1-2):3-67, 2001.
  14. L. E. J. Brouwer. On the Foundations of Mathematics. Springer, 1927.
  15. Hermann Weyl. Philosophy of Mathematics and Natural Science. Princeton University Press, 1949.
  16. Gregory Chaitin. Thinking about Gödel and Turing: Essays on complexity, 1970-2007. World Scientific, 2007.
  17. Seth Lloyd. Ultimate Physical Limits to Computation. Nature, 2000.
  18. Yosef Akhtman. Geometry and constants in finite ring continuum. Preprints, June 2025. URL: https://www.preprints.org/manuscript/202505.2112/v3.
  19. Yosef Akhtman. Finite ring continuum at composite cardinalities. Preprints, June 2025. URL: https://www.preprints.org/manuscript/202506.0697/v1.
  20. David M. Burton. Elementary Number Theory. McGraw-Hill, 7th edition, 2010.
  21. David S. Dummit and Richard M. Foote. Abstract Algebra. John Wiley & Sons, 3rd edition, 2004.
  22. Michael Artin. Algebra. Pearson, 2nd edition, 2011.
  23. Donald E. Knuth. The Art of Computer Programming, Volume 1: Fundamental Algorithms. Addison-Wesley, 3rd edition, 1997.
  24. Jean-Pierre Serre. Local Fields, volume 67 of Graduate Texts in Mathematics. Springer, New York, 1979.
  25. Alan M. Turing. On computable numbers, with an application to the entscheidungsproblem. Proceedings of the London Mathematical Society, 42(1):230-265, 1936.
  26. Gabriel Lamé. Mémoire sur la résolution des équations numériques. Comptes Rendus de l'Académie des Sciences, 19:867-872, 1844.
  27. Walter Rudin. Principles of Mathematical Analysis. McGraw-Hill, New York, 3rd edition, 1976.
  28. Kenneth G Wilson. Renormalization group and critical phenomena. i. renormalization group and the kadanoff scaling picture. Physical Review B, 4(9):3174-3183, 1971.
  29. John Cardy. Scaling and renormalization in statistical physics. Cambridge University Press, 1996.
  30. Jon Barwise and John Perry. Situations and Attitudes. MIT Press, 1985.
  31. Robert P. Langlands. Problems in the Theory of Automorphic Forms. Springer-Verlag, 1970.
  32. Armand Borel. Automorphic Forms on Reductive Groups. Springer-Verlag, 1979.
  33. V. G. Drinfeld. Elliptic modules. Mathematics of the USSR-Sbornik, 23(4):561-592, 1974.
  34. Laurent Lafforgue. Chtoucas de drinfeld et correspondance de langlands. Inventiones mathematicae, 147(1):1-241, 2002.