Trigonometric Approximation of SO(N) Loops
2010, Constructive Approximation
https://doi.org/10.1007/S00365-010-9107-6Abstract
This paper extends previous work on approximation of loops to the case of special orthogonal groups SO(N ), N ≥ 3. We prove that the best approximation of an SO(N ) loop Q(t) belonging to a Hölder class Lip α , α > 1, by a polynomial SO(N ) loop of degree ≤n is of order O(n -α+ ) for n ≥ k, where k = k(Q) is determined by topological properties of the loop and > 0 is arbitrarily small. The convergence rate is therefore -close to the optimal achievable rate of approximation. The construction of polynomial loops involves higher-order splitting methods for the matrix exponential. A novelty in this work is the factorization technique for SO(N ) loops which incorporates the loops' topological aspects.
References (15)
- Adams, F.: Lectures on Lie Groups. University of Chicago Press, Chicago (1982)
- Deimling, K.: Nonlinear Functional Analysis. Springer, New York (1985)
- DeVore, R.A., Lorentz, G.G.: Constructive Approximation. Springer, Berlin (1993)
- Lawton, W.M.: Conjugate quadrature filters. In: Lau, K.-S. (ed.) Advances in Wavelets, pp. 103-119. Springer, Berlin (1999)
- Lawton, W.M.: Hermite interpolation in loop groups and conjugate quadrature filter approximation. Acta Appl. Math. 84, 315-349 (2004)
- McLachlan, R.I., Quispel, G.R.W.: Splitting methods. Acta Numer. 11, 341-434 (2002)
- Oswald, P., Shingel, T.: Splitting methods for SU(N) loop approximation. J. Approx. Theory 161, 174-186 (2009)
- Oswald, P., Shingel, T.: Close-to-optimal bounds for SU(N) loop approximation. J. Approx. Theory (2008). doi:10.1016/j.jat.2010.04.006
- Oswald, P., Madsen, C.K., Konsbruck, R.L.: Analysis of scalable PMD compensators using FIR filters and wevelength-dependent optical measurements. J. Lightwave Technol. 22(2), 647-657 (2004)
- Presley, A., Segal, G.: Loop Groups. Oxford Univ. Press, London (1986)
- Rossmann, W.: Lie Groups: An Introduction Through Linear Groups. Oxford Univ. Press, London (2002)
- Sheng, Q.: Global error estimates for exponential splitting. IMA J. Numer. Anal. 14, 27-57 (1993)
- Strang, G., Nguyen, T.: Wavelets and Filter Banks. Cambridge University Press, Cambridge (1996)
- Suzuki, M.: Decomposition formulas of exponential operators and Lie exponentials with some appli- cations to quantum mechanics and statistical physics. J. Math. Phys. 26, 601-612 (1985)
- Zanna, A., Munthe-Kaas, H.Z.: Generalized polar decompositions for the approximation of the matrix exponential. SIAM J. Matrix Anal. Appl. 23(3), 840-862 (2002)