The De Casteljau Algorithm on Lie Groups and Spheres
1999, Journal of Dynamical and Control Systems
https://doi.org/10.1023/A:1021770717822Abstract
We examine the De Casteljau algorithm in the context of Riemannian symmetric spaces. This algorithm, whose classical form is used to generate interpolating polynomials in $$\mathbb{R}^n $$ , was also generalized to arbitrary Riemannian manifolds by others. However, the implementation of the generalized algorithm is difficult since detailed structure, such as boundary value expressions, has not been available. Lie groups
References (33)
- A. Barr, B. Currin, S. Gabriel, and J. Hughes, Smooth interpolation of orientations with angular velocity constraints using quaternions. In: Proc. Computer Graphics (SIGRAPH 92) 26 (1992), No. 2, 313-320.
- P. Bezier, The mathematical basis of the UNISURF CAD System. But- terworths, London, 1986.
- W.M. Boothby, An introduction to differential manifolds and Rieman- nian geometry. Academic Press, Pure and Appl. Math. Series of Mono- graphs and Textbooks, Vol. 63, New York, 1975.
- M. Camarinha, F. Silva Leite, and P. Crouch, Splines of class Ck on non-Euclidean spaces. J. Math. Control and Inform. 12 (1995), 399- 410.
- ------, Second order optimality conditions for a higher order varia- tional problem on a Riemannian manifold. In: Proc. 35th IEEE CDC, Kobe-Japan, 11-13 December (1996), Vol. II, 1636-1641.
- -----, Sufficient conditions for an optimization problem on a Rie- mannian manifold. In: Proc. CONTROLO-96, Porto-Portugal, 11-13 September (1996), Vol. I, 127-131.
- J. Cardoso and F. Silva Leite, Logarithms and exponentials for the Lie group of P-orthogonal matrices. Submitted in 1998.
- Chao-Chi Chen, Interpolation of orientation matrices using sphere splines in computer animation. Master of Science Thesis, Arizona State University (1990).
- P. Crouch and F. Silva Leite, The dynamic interpolation problem on riemannian manifolds, Lie groups and symmetric spaces, J. Dynam. Control Syst. 1 (1995), No. 2, 177-202.
- -----, Geometry and the dynamic interpolation problem, In: Proc. Am. Control Confer. Boston, 26-29 July (1991).
- -----, Closed forms for the exponential mapping on matrix Lie groups based on Putzer's method. To appear in: J. Math. Physics.
- P. Crouch, G. Kun, and F. Silva Leite, De Casteljau algorithm for cubic polynomials on the rotation group. In: Proc. CONTROLO-96, 11-13 September (1996), Vol. II, 547-552.
- ------, Geometric splines. To appear in: Proc. 14th IFAC World Congress, 5-9 July (1999), Beijing, P. R. China.
- P. Crouch and J. Jackson, A non-holonomic dynamic interpolation problem. In: Proc. Confer. Anal. Control Dynam. Syst. Lion-France, 1990, Birkhauser, series Progress in Systems and Control, 1991, 156- 166.
- ------, Dynamic interpolation and application to flight control. To appear in: Proc. IEEE Decision and Control Confer. Honolulu, Hawaii (1990).
- -----, Dynamic interpolation and application to flight control To ap- pear in: J. Guidance, Control and Dynam.
- J. Jackson, Dynamic interpolation and application to flight control. PhD thesis, Arizona State University, 1990.
- P. De Casteljau, Outillages Methodes Calcul. Technical Report, A. Cit- roen, Paris, 1959.
- G. Farin, Curves and surfaces for CAGD. Academic Press, Third Edi- tion, 1993.
- Q.J. Ge and B. Ravani, Computer aided geometric design of motion interpolants. In: Proc. ASME Design Automation Conf. Miami, Fl, September, 1991, 33-41.
- -----, Computational geometry and mechanical design synthesis, In: Proc. 13th IMACS World Congress on Computation and Applied Math- ematics, Dublin, Ireland, 1991, 1013-1015.
- ------, Geometric construction of Bezier motions. ASME J. Mechan. Design 116 (1994), 749-755.
- R. Hirschorn, Curves in homogeneous spaces. Can. J. Math. 29 (1977), No. 1, 77-83.
- B. Jutler, Visualization of moving objects using dual quaternion curves. Computers and Graphics 18 (1994), No. 3, 315-326.
- M. J. Kim, M. S. Kim, and S. Y. Shin, A general construction scheme for unit quaternion curves with simple high order derivatives. In: Computer Graphics Proc., Annual Conf. Series, (SIGRAPH 95), Los Angeles, CA., 1995, 369-376.
- J. Milnor, Morse theory. Ann. Math. Stud. 51 (1969), Princeton Uni- versity Press.
- G. Nielson and R. Heiland, Animated rotations using quaternions and splines on a 4D sphere. In: Programmirovanie (Russia) Springer Verlag, English edition. Programming and Computer Software, Plenum Pub. NY 17-27 (1992).
- G. Nielson, Smooth interpolation of orientations. Models and Tech- niques in Computer Animation (N. Magnenat Thalmann and D. Thal- mann Eds.), Springer Verlag, Tokyo, 1993, 75-93.
- L. Noakes, G. Heinzinger and B. Paden, Cubic splines on curved spaces. IMA J. Math. Control Inform. 6 (1989), 465-473.
- K. Nomizu, Foundations of differential geometry. In: Interscience Tracts in Pure and Applied Mathematics, John Willey and Sons, Vol. I, II (1969).
- F. Park and B. Ravani, Bezier curves on Riemannian manifolds and Lie groups with kinematic applications. ASME J. Mechan. Design 117 (1995), 36-40.
- D. Sattinger and O. Weaver, Lie groups and algebras with applications to physics, geometry and mechanics. Appl. Math. Sci. 61, Springer Ver- lag, 1986.
- K. Shoemake, Animating rotations with quaternion curves. ACM SI- GRAPH 85 19 245-254 (1985). (Received 06.04.1999)