Academia.eduAcademia.edu

Outline

$p$-Central Subspaces of Central Simple Algebras

Abstract

We study central simple algebras in various ways, focusing on the role of $p$-central subspaces. The first part of my thesis is dedicated to the study of Clifford algebras. The standard Clifford algebra of a given form is the generic associative algebra containing a $p$-central subspace whose exponentiation form is equal to the given form. There is an old question as for whether these algebras have representations of finite rank over the center, and jointly with Daniel Krashen and Max Lieblich we managed to provide a positive answer. Different generalizations of the structure of the Clifford algebra are presented and studied in that part too. The second part is dedicated to the study of $p$-central subspaces of given central simple algebras, mainly tensor products of cyclic algebras of degree $p$. Among the results, we prove that $5$ is the upper bound for the dimension of 4-central subspaces of cyclic algebras of degree 4 containing pairs of standard generators. The third part is d...

References (43)

  1. A. Adrian Albert, Structure of algebras, Revised printing. American Mathematical Society Colloquium Publications, Vol. XXIV, American Mathematical Society, Providence, R.I., 1961. MR 0123587 (23 #A912)
  2. Michael Artin, Fernando Rodriguez-Villegas, and John Tate, On the Jacobians of plane cubics, Adv. Math. 198 (2005), no. 1, 366-382. MR 2183258 (2006h:14043)
  3. Helmer Aslaksen, Quaternionic determinants, Math. Intelligencer 18 (1996), no. 3, 57-65. MR 1412993 (97j:16028)
  4. Yik-Hoi Au-Yeung, An explicit solution for the quaternionic equation x 2 + bx + xc + d = 0, Southeast Asian Bull. Math. 26 (2003), no. 5, 717-724. MR 2045106 (2004m:16026)
  5. Adam Chapman, Polynomial equations over division rings, 2009, Thesis (M.Sc.)-Bar-Ilan University.
  6. General polynomials over division algebras and left eigenvalues, Electron. J. Linear Algebra 23 (2012), 508-513. MR 2928573
  7. Lindsay N. Childs, Linearizing of n-ic forms and generalized Clifford algebras, Linear and Multilinear Algebra 5 (1977/78), no. 4, 267-278. MR 0472880 (57 #12567)
  8. Mirela Ciperiani and Daniel Krashen, Relative Brauer groups of genus 1 curves, Israel J. Math. 192 (2012), no. 2, 921-949. MR 3009747
  9. Emre Coskun, Rajesh S. Kulkarni, and Yusuf Mustopa, On represen- tations of Clifford algebras of ternary cubic forms, New trends in non- commutative algebra, Contemp. Math., vol. 562, Amer. Math. Soc., Providence, RI, 2012, pp. 91-99. MR 2905555
  10. Adam Chapman and Uzi Vishne, Clifford algebras of binary homoge- neous forms, J. Algebra 366 (2012), 94-111. MR 2942645 [CV13] , Square-central elements and standard generators for biquater- nion algebras, Israel J. Math. 197 (2013), no. 1, 409-423. MR 3096621
  11. L. E. Dickson, Linear associative algebras and abelian equations, Trans. Amer. Math. Soc. 15 (1914), no. 1, 31-46. MR 1500963
  12. B. Gordon and T. S. Motzkin, On the zeros of polynomials over division rings, Trans. Amer. Math. Soc. 116 (1965), 218-226. MR 0195853 (33 #4050a)
  13. Darrell E. Haile, On the Clifford algebra of a binary cubic form, Amer. J. Math. 106 (1984), no. 6, 1269-1280. MR 765580 (86c:11028)
  14. When is the Clifford algebra of a binary cubic form split?, J. Algebra 146 (1992), no. 2, 514-520. MR 1152918 (93a:11029)
  15. Nickolas Heerema, An algebra determined by a binary cubic form, Duke Math. J. 21 (1954), 423-443. MR 0064030 (16,214d)
  16. Darrell Haile and Ilseop Han, On an algebra determined by a quartic curve of genus one, J. Algebra 313 (2007), no. 2, 811-823. MR 2329571 (2008f:16044)
  17. Darrell Haile, Jung-Miao Kuo, and Jean-Pierre Tignol, On chains in division algebras of degree 3, C. R. Math. Acad. Sci. Paris 347 (2009), no. 15-16, 849-852. MR 2542882 (2010h:16039)
  18. Liping Huang and Wasin So, Quadratic formulas for quaternions, Appl. Math. Lett. 15 (2002), no. 5, 533-540. MR 1889501 (2003d:12003)
  19. Drahoslava Janovská and Gerhard Opfer, The classification and the computation of the zeros of quaternionic, two-sided polynomials, Numer. Math. 115 (2010), no. 1, 81-100. MR 2594342 (2011b:16096)
  20. A note on the computation of all zeros of simple quater- nionic polynomials, SIAM J. Numer. Anal. 48 (2010), no. 1, 244-256. MR 2608368 (2011c:11170)
  21. Cemal Koç and Yosum Kurtulmaz, Structure theory of central sim- ple Z d -graded algebras, Turkish J. Math. 36 (2012), no. 4, 560-577. MR 2993587
  22. Max-Albert Knus, Alexander Merkurjev, Markus Rost, and Jean-Pierre Tignol, The book of involutions, American Mathematical Society Col- loquium Publications, vol. 44, American Mathematical Society, Prov- idence, RI, 1998, With a preface in French by J. Tits. MR 1632779 (2000a:16031)
  23. Jung-Miao Kuo, On an algebra associated to a ternary cubic curve, J. Algebra 330 (2011), 86-102. MR 2774619 (2012b:16040)
  24. T. Y. Lam, The algebraic theory of quadratic forms, W. A. Ben- jamin, Inc., Reading, Mass., 1973, Mathematics Lecture Note Series. MR 0396410 (53 #277)
  25. F. W. Long, A generalization of the Brauer group of graded algebras, Proc. London Math. Soc. (3) 29 (1974), 237-256. MR 0354753 (50 #7230)
  26. J. Lawrence and G. E. Simons, Equations in division rings-a sur- vey, Amer. Math. Monthly 96 (1989), no. 3, 220-232. MR 991867 (90g:16015)
  27. Eliyah Matzri, Louis H. Rowen, and Uzi Vishne, Non-cyclic algebras with n-central elements, Proc. Amer. Math. Soc. 140 (2012), no. 2, 513-518. MR 2846319 (2012i:16034)
  28. A. S. Merkur ′ ev and A. A. Suslin, K-cohomology of Severi-Brauer vari- eties and the norm residue homomorphism, Izv. Akad. Nauk SSSR Ser. Mat. 46 (1982), no. 5, 1011-1046, 1135-1136. MR 675529 (84i:12007)
  29. P. Mammone, J.-P. Tignol, and A. Wadsworth, Fields of characteristic 2 with prescribed u-invariants, Math. Ann. 290 (1991), no. 1, 109-128. MR 1107665 (92g:11035)
  30. Eliyahu Matzri and Uzi Vishne, Isotropic subspaces in symmetric com- position algebras and Kummer subspaces in central simple algebras of degree 3, Manuscripta Math. 137 (2012), no. 3-4, 497-523. MR 2875290 [MV14] , Composition algebras and cyclic p-algebras in characteristic 3, Manuscripta Math. 143 (2014), no. 1-2, 1-18. MR 3147442
  31. E. Macías-Virgós and M. J. Pereira-Sáez, Left eigenvalues of 2 × 2 symplectic matrices, Electron. J. Linear Algebra 18 (2009), 274-280. MR 2519914 (2010f:15042)
  32. Christopher J. Pappacena, Matrix pencils and a generalized Clifford algebra, Linear Algebra Appl. 313 (2000), no. 1-3, 1-20. MR 1770355 (2001e:15010)
  33. Mélanie Raczek, On ternary cubic forms that determine central sim- ple algebras of degree 3, J. Algebra 322 (2009), no. 5, 1803-1818. MR 2543635 (2010h:16043)
  34. Ph. Revoy, Algèbres de Clifford et algèbres extérieures, J. Algebra 46 (1977), no. 1, 268-277. MR 0472881 (57 #12568)
  35. Norbert Roby, Algèbres de Clifford des formes polynomes, C. R. Acad. Sci. Paris Sér. A-B 268 (1969), A484-A486. MR 0241454 (39 #2794)
  36. Markus Rost, The chain lemma for Kummer elements of degree 3, C. R. Acad. Sci. Paris Sér. I Math. 328 (1999), no. 3, 185-190. MR 1674602 (2000c:12003)
  37. Louis H. Rowen, Ring theory. Vol. II, Pure and Applied Mathemat- ics, vol. 128, Academic Press Inc., Boston, MA, 1988. MR 945718 (89h:16002)
  38. Wedderburn's method and algebraic elements of simple Ar- tinian rings, Azumaya algebras, actions, and modules (Bloomington, IN, 1990), Contemp. Math., vol. 124, Amer. Math. Soc., Providence, RI, 1992, pp. 179-202. MR 1144036 (92k:16025)
  39. A. S. Sivatski, The chain lemma for biquaternion algebras, J. Algebra 350 (2012), 170-173. MR 2859881 (2012j:16037)
  40. Wasin So, Quaternionic left eigenvalue problem, Southeast Asian Bull. Math. 29 (2005), no. 3, 555-565. MR 2216293 (2006m:15030)
  41. M. Van den Bergh, Linearisations of binary and ternary forms, J. Al- gebra 109 (1987), no. 1, 172-183. MR 898344 (88j:11020)
  42. Uzi Vishne, Generators of central simple p-algebras of degree 3, Israel J. Math. 129 (2002), 175-187. MR 1910941 (2003g:16022)
  43. R. M. W. Wood, Quaternionic eigenvalues, Bull. London Math. Soc. 17 (1985), no. 2, 137-138. MR 806238 (86m:15013)