Non-cyclic algebras with $n$-central elements
2012, Proceedings of the American Mathematical Society
https://doi.org/10.1090/S0002-9939-2011-11236-XAbstract
We construct, for any prime p, a non-cyclic central simple algebra of degree p 2 with p 2 -central elements. This construction answers a problem of Peter Roquette.
References (8)
- A.A. Albert, Non-cyclic algebras with pure maximal subfields, Bull. AMS 44, 576-579 (1938). MR1563796
- A.A. Albert, Modern Higher Algebra, University of Chicago Press, 1937.
- A.A. Albert, Structure of Algebras, Amer. Math. Soc. Coll. Publ. XXIV, AMS, 1961. MR0123587 (23:A912)
- S. Amitsur and D. Saltman, Generic Abelian crossed products and p-algebras, J. Algebra 51(1), 76-87 (1978). MR0491789 (58:10988)
- R. Dubisch, Non-cyclic algebras of degree four and exponent two with pure maximal subfields, Bull. Amer. Math. Soc. 47, 131-133 (1941). MR0003623 (2:246b)
- A. Auel, E. Brussel, S. Garibaldi and U. Vishne, Open problems on central simple algebras, Transformation Groups 16(1), 219-264 (2011).
- J. Minác and A. Wadsworth, Division algebras of prime degree and maximal Galois p- extensions, Canad. J. Math. 59(3), 658-672 (2007). MR2319163 (2008c:16029)
- U. Vishne, Galois cohomology of fields without roots of unity, J. Algebra 279(2), 451-492 (2004). MR2078127 (2005e:12008)