Academia.eduAcademia.edu

Outline

A fixed point theorem for discontinuous functions

2008, Operations Research Letters

https://doi.org/10.1016/J.ORL.2007.03.008

Abstract

Any function from a non-empty polytope into itself that is locally gross direction preserving is shown to have the fixed point property. Brouwer's fixed point theorem for continuous functions is a special case. We discuss the application of the result in the area of non-cooperative game theory.

References (17)

  1. K.J. Arrow, F.H. Hahn, General Competitive Analysis, Holden-Day, San Francisco, 1971.
  2. K. Borsuk, Drei Sätze über die n-dimensionale euklidische Sphäre, Fund. Math. 20 (1933) 177-190.
  3. L.E.J. Brouwer, Über Abbildung von Mannigfaltigkeiten, Math. Ann. 71 (1912) 97-115.
  4. J. Caristi, Fixed point theorems for mappings satisfying inwardness conditions, Trans. Am. Math. Soc. 215 (1976) 241-251.
  5. D. Fudenberg, J. Tirole, Game Theory, MIT Press, Boston, 1991.
  6. J.D. Geneakoplos, Nash and Walras equilibrium via Brouwer, Econ. Theory 21 (2003) 585-603.
  7. P.J.J. Herings, Two simple proofs of feasibility of the linear tracing procedure, Econ. Theory 15 (2000) 485-490.
  8. V.I. Istratescu, Fixed Point Theory: An Introduction, Reidel Publishing, Dordrecht, 1981.
  9. S. Kakutani, A generalization of Brouwer's fixed point theorem, Duke Math. J. 8 (1941) 457-459.
  10. S. Karlin, Mathematical Models and Theory in Games, Programming and Economics, Addison-Wesley, Reading, MA, 1959.
  11. C. Pitchik, Equilibria of a two-person non-zero-sum noisy game of timing, Int. J. Game Theory 10 (1982) 207-221.
  12. P.J. Reny, On the existence of pure and mixed strategy Nash equilibria in discontinuous games, Econometrica 67 (1999) 1029-1056.
  13. J. Schauder, Der Fixpunktsatz in Funktionalraümen, Stud. Math. 2 (1930) 171-180.
  14. R. Smart, Fixed Point Theorems, Cambridge University Press, Cambridge, 1974.
  15. A.J.J. Talman, Y. Yamamoto, A simplicial algorithm for stationary point problems on polytopes, Math. Oper. Res. 14 (1989) 383-399.
  16. A. Tarski, A lattice-theoretical fixed point theorem and its applications, Pac. J. Math. 5 (1955) 285-309.
  17. Z. Yang, Discrete fixed point analysis and its applications, FBA Discussion Paper 210, Yokohama National University, Yokohama, 2004.