Academia.eduAcademia.edu

Outline

Wada property in systems with delay

2017, Communications in Nonlinear Science and Numerical Simulation

https://doi.org/10.1016/J.CNSNS.2016.07.008

Abstract

Delay differential equations take into account the transmission time of the information. These delayed signals may turn a predictable system into chaotic, with the usual fractalization of the phase space. In this work, we study the connection between delay and unpredictability, in particular we focus on the Wada property in systems with delay. This topological property gives rise to dramatical changes in the final state for small changes in the history functions.

References (33)

  1. Lewis J. Autoinhibition with Transcriptional Delay: A Simple Mechanism for the Zebrafish Somitogenesis Oscillator. Curr Biol 2003;13:1398-408.
  2. Nordenfelt A, Wagemakers A, Sanjuán MAF. Frequency dispersion in the time-delayed Ku- ramoto model. Phys Rev E 2014;89:032905.
  3. Mackey MC, Glass L. Oscillation and chaos in physiological control systems. Science 1977;197:287-9.
  4. Wang XF, Zhong G-Q, Tang K-S, Man KF, Liu Z-F. Generating chaos in Chua's circuit via time-delay feedback. IEEE T Circuits-I 2001;48:1151-6.
  5. Ikeda K, Matsumoto K. High-dimensional chaotic behavior in systems with time-delayed feed- back. Physica D 1987;29:223-35.
  6. Kyrychko YN, Hogan SJ. On the Use of Delay Equations in Engineering Applications. Journal of Vibration and Control 2010;16:943-60.
  7. Sprott JC. A simple chaotic delay differential equation. Phys Lett 2007;366:397-402.
  8. Ikeda K, Matsumoto K. Study of a high-dimensional chaotic attractor. J Stat Phys 1986;44:955-83.
  9. Ramana Reddy DV, Sen A, Johnston GL. Experimental Evidence of Time-Delay-Induced Death in Coupled Limit-Cycle Oscillators. Phys Rev Lett 2000;85:3381-4.
  10. Nordenfelt A, Used J, Sanjuán MAF. Bursting frequency versus phase synchronization in time-delayed neuron networks. Phys Rev E 2013;87:052903.
  11. Lakshmanan M, Senthilkumar DV. Dynamics of Nonlinear Time-Delay Systems. Berlin, Hei- delberg: Springer Berlin Heidelberg; 2011.
  12. Mackey MC. The dynamic origin of increasing entropy. Rev Mod Phys 1989;61:981-1015.
  13. Aguirregabiria JM, Etxebarria JR. Fractal basin boundaries of a delay-differential equation. Phys Lett 1987;122:241-4.
  14. Losson J, Mackey MC, Longtin A. Solution multistability in first-order nonlinear differential delay equations. Chaos 1993;3:167-76.
  15. Taylor SR, Campbell SA. Approximating chaotic saddles for delay differential equations. Phys Rev E 2007;75:046215.
  16. Yoneyama K. Theory of Continuous Set of Points. Tohoku Mathematical Journal, First Series 1917;12:43-158.
  17. Kennedy J, Yorke JA. Basins of Wada. Physica D 1991;51:213-25.
  18. Nusse HE, Ott E, Yorke JA. Saddle-Node Bifurcations on Fractal Basin Boundaries. Phys Rev Lett 1995;75:2482-5.
  19. Nusse HE, Yorke JA. Wada basin boundaries and basin cells. Physica D: Nonlinear Phenomena 1996;90:242-61.
  20. Nusse HE, Yorke JA. Fractal Basin Boundaries Generated by Basin Cells and the Geometry of Mixing Chaotic Flows. Phys Rev Lett 2000;84:626-9.
  21. Aguirre J, Sanjuán MAF. Unpredictable behavior in the Duffing oscillator: Wada basins. Physica D: Nonlinear Phenomena 2002;171:41-51.
  22. Aguirre J, Vallejo JC, Sanjuán MAF. Wada basins and chaotic invariant sets in the H'enon- Heiles system. Phys Rev E 2001;64:066208.
  23. Toroczkai Z, Károlyi G, Péntek Á, Tél T, Grebogi C. Advection of Active Particles in Open Chaotic Flows. Phys Rev Lett 1998;80:500-3.
  24. Zhang Y, Luo G. Wada bifurcations and partially Wada basin boundaries in a two-dimensional cubic map. Physics Letters A 2013;377:1274-81.
  25. Epureanu BI, Greenside HS. Fractal Basins of Attraction Associated with a Damped Newton's Method. SIAM Rev 1998;40:102-9.
  26. Kovács Z, Wiesenfeld L. Topological aspects of chaotic scattering in higher dimensions. Phys Rev E 2001;63:056207.
  27. Sweet D, Ott E, Yorke JA. Topology in chaotic scattering. Nature 1999;399:315-6.
  28. Daza A, Wagemakers A, Sanjuán MAF, Yorke JA. Testing for Basins of Wada. Scientific Reports 2015;5:16579.
  29. Boutle I, Taylor RHS, Römer RA. El Niño and the delayed action oscillator. Am J Phys 2007;75:15-24.
  30. Redmond BF, LeBlanc VG, Longtin A. Bifurcation analysis of a class of first-order nonlinear delay-differential equations with reflectional symmetry. Physica D 2002;166:131-46.
  31. Li T-Y, Yorke JA. Period Three Implies Chaos. Am Math Mon 1975;82:985-92.
  32. Heiden U an der, Mackey MC. The dynamics of production and destruction: Analytic insight into complex behavior. J Math Biology 1982;16:75-101.
  33. Hale JK, Sternberg N. Onset of chaos in differential delay equations. J Comput Phys 1988;77:221-39.