On subsemimodules of semimodules
2010
Abstract
P. J. Allen introduced the notion of a Q-ideal and a construction process was presented by which one can build the quotient structure of a semiring modulo a Q-ideal. Here we introduce the notion of QM -subsemimodule N of a semimodule M over a semiring R and construct the factor semimodule M/N . It is shown that this notion inherits most of the essential properties of the factor modules over a ring. Mathematics subject classification: 16Y60.
References (9)
- Allen P. J. A fundamental theorem of homomorphisms for simirings. Proc. Amer. Math. Soc, 1969, 21, 412-416.
- Ebrahimi Atani S. The ideal theory in quotients of commutative semirings. Glasnik Matema- ticki, 2007, 42, 301-308.
- Ebrahimi Atani R., Ebrahimi Atani S. Ideal theory in commutative semirings. Buletinul Acad. Sci. Rep. Moldova, ser. Math., 2008, No. 2(57), 14-23.
- Golan J. S. The theory of semirings with applications in mathematics and theoretical com- puter Science, Pitman Monographs and Surveys in Pure and Applied Mathematics, Longman Scientific and Technical, Harlow UK, 1992.
- Hebisch U., Weinert U. J. Halbringe -Algebraische Theorie und Anwendungen in der Infor- matik, Teubner, Stuttgart 1993.
- Lu C. P. Prime submodules of modules. Comment. Univ. St. Pauli 1984, 33, 61-69.
- Maze G., Monico C., Rosenthal J. Public key cryptography on semigroup actions, arXiv:cs. CR/0501017v2 28 Jan 2005.
- Rasht, Iran E-mail: rebrahimi@guilan.ac.ir Shahabaddin Ebrahimi Atani Department of Mathematics Faculty of Science University of Guilan, P.O. Box 1914
- Rasht, Iran E-mail: ebrahimi@guilan.ac.ir Received October 20, 2008