Academia.eduAcademia.edu

Outline

An optical flash on Venus detected by the AKATSUKI spacecraft

2021

https://doi.org/10.21203/RS.3.RS-379882/V1

Abstract

Detection of lightning discharges on Venus has been attempted using both radio waves and optical methods for over 40 years. For optical observations, claims of lightning detection were controversial due to the lack of time resolution of optical emissions that is needed to separate lightning from artificial or natural noise. Here we show the first high-time-resolution light curve of a transient optical phenomenon observed by the Lightning and Airglow Camera (LAC), a dedicated instrument on the Venus orbiter Akatsuki. The observed transient was 10 times brighter than a typical terrestrial lightning flash and had a duration of a few hundred milliseconds, whereas that of typical Earth lightning is only a millisecond. These characteristics are not typical, but are well within the variability of Earth lightning. An origin as a bolide flare cannot be excluded, but considering the expected occurrence frequency of meteoroids at Venus, is improbable. The low flash rate and long duration deter...

References (50)

  1. Krasnopolsky, V.A., Venus spectroscopy in the 3000-8000 A region by Veneras 9 and 10, in Venus, ed. by D.M. Hunten et al. (Univ. of Arizona Press, Tucson, 1983a), pp. 459-483
  2. Borucki, W.J., J.W. Dyer, J.R. Phillips, P. Phan, Pioneer Venus Orbiter search for Venusian lightning. J. Geophys. Res. 96, 11033-11043 (1991). doi:10.1029/91JA01097
  3. Gurnett, D.A.,W.S.Kurth, A. Roux, R. Gendrin, C.F. Kennel, S.J. Bolton, Lightning and plasma wave observations from the Galileo flyby of Venus. Science 253, 1522-1525 (1991). doi:10.1126/ science.253.5027.1522
  4. Russell, C.T., Venus lightning. Space Sci. Rev. 55, 317-356 (1991)
  5. Hansell, S. A., W. K. Wells, and D. M. Hunten (1995), Optical detection of lightning on Venus, Icarus, 117, 345-351.
  6. Gurnett, D.A., P. Zarka, R. Manning, W.S. Kurth, G.B. Hospodarsky, T.F. Averkamp et al., Non-detection at Venus of high-frequency radio signals characteristic of terrestrial lightning. Nature 409, 313-315 (2001). doi:10.1038/35053009
  7. Russell, C.T., T.L. Zhang, M. Delva, W. Magnes, R.J. Strangeway, H.Y. Wei, Lightning on Venus inferred from whistler-mode waves in the ionosphere. Nature 450, (2007). doi:10.1038/nature05930
  8. Cardesin Moinelo, A., Abildgaard S., Garcia Muñoz, A., Piccioni G., Grassi, D. No statistical evidence of lightning in Venus night-side atmosphere from VIRTIS-Venus Express Visible observations. Icarus. 2016 Oct 1;277:395-400.
  9. Lorenz, R. D., Lightning detection on Venus: a critical review, Progress in Earth and Planetary Science (2018) 5:34, https://doi.org/10.1186/s40645-018-0181-x
  10. Takahashi, T., J. Yoshida, Y. Yair, T. Imamura, M. Nakamura, Lightning detection by LAC onboard the Japanese Venus Climate Orbiter, Planet-C, Space Sci. Rev., 137, 317-334, DOI 10.1007/s11214-008-9400-x, 2008.
  11. Suszcynsky, D. M., M. W. Kirkland, A. R. Jacobson, R. C. Franz, S. O. Knox, J. L. L. Guillen, and J. L. Green, FORTE observations of simultaneous VHF and optical emissions from lightning: Basic phenomenology, J. Geophys. Res., 105, 2191-2201, 2000
  12. Borucki, W.J., R.L. Mc Kenze, C.P. McKay, N.D. Duong, D.S. Boac, Spectra of simulated lightning on Venus, Jupiter, and Titan. Icarus 64, 221-232 (1985). doi:10.1016/0019- 1035(85)90087-9 Medline
  13. Takahashi, Y., M. Sato, M. Imai, R. Lorenz, Y. Yair, K. Aplin, G. Fischer, M. Nakamura, N. Ishii, T. Abe, T. Satoh, T. Imamura, C. Hirose, M. Suzuki, G. L. Hashimoto, N. Hitrata, A. Yamazaki, T. M. Sato, M. Yamada, S. Murakami, Y. Yamamoto, T. Fukuhara, K. Ogohara, H. Ando, K. Sugiyama, H. Kashimura and S. Ohtsuki, 2018. Initiation of a lightning search using the lightning and airglow camera onboard the Venus orbiter Akatsuki, Earth, Planets, Space, 70:88. https://doi.org/10.1186/s40623-018-0836-2
  14. Lorenz, R., M. Imai, Y. Takahashi, M. Sato, A. Yamazaki, T.M. Sato, T. Imamura, T. Satoh, M. Nakamura, 2019. Constraints on Venus Lightning from Akatsuki's first Three Years in Orbit, Geophysics Research Letters, 46, 7955-7961. https://doi.org/10.1029/2019GL083311
  15. Sato, M., et al. (2016), Horizontal distributions of sprites derived from the JEM-GLIMS nadir observations, J. Geophys. Res. Atmos., 121, 3171-3194, doi:10.1002/2015JD024311.
  16. Aplin, K.L., Electrifying Atmospheres: Charging, Ionisation and Lightning in the Solar System and Beyond, 1st edn. (Springer, Dordrecht, 2013), p. 13
  17. Titov, D.V., Ignatiev, N.I., McGouldrick, K. et al. Clouds and Hazes of Venus. Space Sci Rev 214, 126 (2018). https://doi.org/10.1007/s11214-018-0552-z Acknowledgements: LAC was developed and has been operated with support by Naoya Hoshino, Makoto Taguchi, Tetsuya Fukuhara, Manabu Yamada, Shinya Murakami, Nobuaki Ishi, Chikako Hirose, Akatsuki Engineering team, Meisei Co. LTD, NEC Corporation and Nikon Corporation.
  18. R. L. acknowledges the support of the NASA VCO Participating Scientist Program, Grant Received 9 October; accepted 21 October 2002; doi:10.1038/nature01238.
  19. Hills, J. G. & Goda, P. Damage from the impacts of small asteroids. Planet. Space Sci. 46, 219-229 (1998).
  20. Sekanina, Z. Evidence for the asteroidal origin of the Tunguska object. Planet. Space Sci. 46, 191-204 (1998).
  21. Morrison, D., Chapman, C. R. & Slovic, P. Hazards due to Comets and Asteroids (ed. Gehrels, T.) 59-91 (Univ. Arizona Press, Tucson, 1994).
  22. Shoemaker, E. M. Asteroid and comet bombardment of the Earth. Annu. Rev. Earth Planet. Sci. 11, 461-494 (1983).
  23. Tagliaferri, E., Spalding, R., Jacobs, C., Worden, S. P. & Erlich, A. Hazards due to Comets and Asteroids (ed. Gehrels, T.) 199-221 (Univ. Arizona Press, Tucson, 1994).
  24. McCord, T. B. et al. Detection of a meteoroid entry into the Earth's atmosphere on February 1, 1994. J. Geophys. Res. 100, 3245-3249 (1995).
  25. Ceplecha, Z. et al. Meteor phenomena and bodies. Space Sci. Res. 84, 327-471 (1998).
  26. Nemtchinov, I. et al. Assessment of kinetic energy of meteoroids detected by satellite-based light sensors. Icarus 130, 259-274 (1997).
  27. Ceplecha, Z., Spalding, R. E., Jacobs, C. & Tagliaferri, E. Proc. SPIE 2813, 46-56 (1996).
  28. ReVelle, D. O. A predictive macroscopic integral radiation efficiency model. J. Geophys. Res. 85, 1803-1808 (1980).
  29. ReVelle, D. O. Meteoroids 2001-Conference Proceedings SP-495 (ed. Warmbein, B.) 513-519 (European Space Agency, Noordijwk, The Netherlands, 2001).
  30. ReVelle, D. O. & Ceplecha, Z. Meteoroids 2001-Conference Proceedings SP-495 (ed. Warmbein, B.) 507-512 (European Space Agency, Noordijwk, The Netherlands, 2001).
  31. Britt, D. & Consolmagno, G. The porosity of dark meteorites and the structure of low-albedo asteroids. Icarus 146, 213-219 (2000).
  32. Harris, A. W. in Proc. Asteroids, Comets, Meteors 2002 (Berlin, in the press).
  33. Werner, S. C., Harris, A. W., Neukum, G. & Ivanov, B. A. NOTE: The near-Earth asteroid size- frequency distribution: a snapshot of the lunar impactor size-frequency distribution. Icarus 156, 287-290 (2002).
  34. Harris, A. W. & Davies, J. K. Physical characteristics of near-Earth asteroids from thermal infrared spectrophotometry. Icarus 142, 464-475 (1999).
  35. Rabinowitz, D., Helin, E., Lawrence, K. & Pravdo, S. A reduced estimate of the number of kilometre- sized near-Earth asteroids. Nature 403, 165-166 (2000).
  36. Halliday, I., Griffin, A. A. & Blackwell, A. T. Detailed data for 259 fireballs from the Canadian camera network and inferences concerning the influx of large meteoroids. Meteoritics 31, 185-217 (1996).
  37. ReVelle, D. O. Meteoroids 2001-Conference Proceedings SP-495 (ed. Warmbein, B.) 483-498 (European Space Agency, Noordijwk, The Netherlands, 2001).
  38. ReVelle, D. O. Historical detection of atmospheric impacts by large bolides using acoustic-gravity waves. Ann. NY Acad. Sci. 822, 284-302 (1997).
  39. Levison, H. F. et al. The mass disruption of Oort cloud comets. Science 296, 2212-2215 (2002).
  40. Borovicka, J. et al. The Moravka meteorite fall -III: Meteoroid initial size, history and composition. Meteorit. Planet. Sci. (submitted).
  41. Brown, P. et al. An entry model for the Tagish Lake fireball using seismic, satellite and infrasound records. Meteorit. Planet. Sci. 37, 661-675 (2002).
  42. ReVelle, D. O., Whitaker, R. W., Armstrong, R. T.. Proc. SPIE 3434, 66-77 (1998).
  43. Brown, P. et al. The fall of the St Robert meteorite. Meteorit. Planet. Sci. 31, 502-517 (1995).
  44. Borovicka, J. & Spurny ´, P. Radiation study of two very bright terrestrial bolides and an application to the comet S-L 9 collision with Jupiter. Icarus 121, 484-510 (1996).
  45. Brown, P., Whitaker, R. W., ReVelle, D. O. & Tagliaferri, E. Multi-station infrasonic observations of two large bolides: signal interpretation and implications for monitoring of atmospheric explosions. Reference list of supplementary material: P. Brown, R. E. Spalding, D. O. ReVelle, E. Tagliaferri and S. P. Worden, The flux of small near- Earth objects colliding with the Earth, Nature, volume 420, pages294-296 (2002)
  46. Popova, O. P., and I. V. Nemtchinov, Estimates of Fireball's Mass Based on Luminosity Curves, Lunar and Planetary Science, volume 27, page 1047 (1996)
  47. Subasinghe, D., M. Campbell-Brown, EdwardStokan, Planet. Space Sci., Volume 143, 71-77
  48. Ito and Malhotra [2006] Ito, T., and R. Malhotra, Dynamical transport of asteroid fragments from the m6 resonance, Advances in Space Research, 38, 817-825 (2006)
  49. Nemtchinov, I. V., V. V. Svetsov, I. B. Kosarev, A. P. Golub', O. P. Popova, V. V. Shuvalov, R. E. Spalding and C. Jacobs, and E. Tagliaferri, Assessment of Kinetic Energy of Meteoroids Detected by Satellite-Based Light Sensors, ICARUS 130, 259-274 (1997)
  50. Jenniskens, P., Albers, J., Tillier, C.E., Edgington, S.F., Longenbaugh, R.S., Goodman, S.J., Rudlosky, S.D., Hildebrand, A.R., Hanton, L., Ciceri, F. and Nowell, R., Detection of meteoroid impacts by the Geostationary Lightning Mapper on the GOES-16 satellite. Meteoritics & Planetary Science, 53(12), pp.2445-2469 (2018)