Academia.eduAcademia.edu

Outline

Quantum Brownian Motion in a Simple Model System

2009, Communications in Mathematical Physics

Abstract

We consider a quantum particle coupled (with strength λ) to a spatial array of independent non-interacting reservoirs in thermal states (heat baths). Under the assumption that the reservoir correlations decay exponentially in time, we prove that the motion of the particle is diffusive at large times for small, but finite λ. Our proof relies on an expansion around the kinetic scaling limit (λ ց 0, while time and space scale as λ -2 ) in which the particle satisfies a Boltzmann equation. We also show an equipartition theorem: the distribution of the kinetic energy of the particle tends to a Maxwell-Boltzmann distribution, up to a correction of O(λ 2 ).

References (24)

  1. H. Araki and E. J. Woods. Representations of the canonical commutation relations describing a nonrelativistic infinite free Bose gas. J. Math. Phys., 4:637, 1963.
  2. V. Bach, J. Fr öhlich, and I. Sigal. Return to equilibrium. J. Math. Phys., 41:3985, 2000.
  3. O. Brattelli and D. W. Robinson. Operator Algebras and Quantum Statistical Mechanics: 2. Springer-Verlag, Berlin, 2nd edition, 1996.
  4. W. Bryc. A remark on the connection between the large deviation principle and the central limit theorem. Stat. and Prob. Lett., 18, 1993.
  5. T. Chen. Localization lengths and Boltzmann limit for the Anderson model at small disorder in dimension 3. J. Stat. Phys., 120(1-2):279 -337, 2005.
  6. J. Clark, W. De Roeck, and C. Maes. Diffusive behaviour from a quantum master equation. preprint arXiv:0812.2858, 2008.
  7. J. Derezi ński. Introduction to Representations of Canonical Commutation and Anticommutation Relations, volume 695 of Lecture Notes in Physics. Springer-Verlag, Berlin, 2006.
  8. J. Derezi ński, V. Jakšić, and C.-A. Pillet. Perturbation theory of W * -dynamics, Liouvilleans and KMS-states. Rev. Math. Phys., 15:447-489, 2003.
  9. L. Erd ös. Linear Boltzmann equation as the long time dynamics of an electron weakly coupled to a phonon field. J. Stat. Phys., 107(85):1043-1127, 2002.
  10. L. Erd ös, M. Salmhofer, and H.-T. Yau. Quantum diffusion of the random Schr ödinger evolution in the scaling limit ii. the recollision diagrams. Comm. Math. Phys, 271:1-53, 2007.
  11. L. Erd ös, M. Salmhofer, and H.-T. Yau. Quantum diffusion of the random Schr ödinger evolution in the scaling limit i. the non-recollision diagrams. Acta Mathematica, 200:211-277, 2008.
  12. L. Erd ös and H.-T. Yau. Linear Boltzmann equation as the weak coupling limit of a random Schr ödinger equation. Comm. Pure Appl. Math., 53(6):667 -735, 2000.
  13. J. Fr öhlich and M. Merkli. Another return of 'return to equilibrium'. Comm. Math. Phys., 251:235-262, 2004.
  14. V. Jakšić and C.-A. Pillet. On a model for quantum friction. iii: Ergodic properties of the spin-boson system. Comm. Math. Phys., 178:627-651, 1996.
  15. Y. Kang and J. Schenker. Diffusion of wave packets in a Markov random potential. arXiv:0808.2784, 2008.
  16. A. A. Ovchinnikov and N. S. Erikhman. Motion of a quantum particle in a stochastic medium. Sov. Phys.-JETP, 40:733-737, 1975.
  17. C.-A. Pillet. Some results on the quantum dynamics of a particle in a Markovian potential. Comm. Math. Phys., 102:237-254, 1985.
  18. M. Reed and B. Simon. Methods of Modern Mathematical physics, volume 4. Academic Press, New York, 1972.
  19. M. Reed and B. Simon. Methods of Modern Mathematical physics, volume 2. Academic Press, New York, 1972.
  20. W. De Roeck. Large deviation generating function for currents in the Pauli-Fierz model. Rev. Math. Phys, 21(4):549-585, 2009.
  21. A. Silvius, P. Parris, and S. De Bievre. Adiabatic-nonadiabatic transition in the diffusive hamiltonian dynamics of a classical Holstein polaron. Phys. Rev. B., 73:014304, 2006.
  22. H. Spohn. Derivation of the transport equation for electrons moving through random impurities. J. Stat. Phys., 17:385-412, 1977.
  23. H. Spohn. Kinetic equations from Hamiltonian dynamics; Markovian limits. Rev. Mod. Phys., 53:569-615, 1980.
  24. S. Tcheremchantsev. Markovian Anderson model: Bounds for the rate of propagation. Comm. Math. Phys., 187(2):441-469, 1997.