Quantum diffusion with drift and the Einstein relation. I
2014, Journal of Mathematical Physics
https://doi.org/10.1063/1.4881532Abstract
We study the dynamics of a quantum particle hopping on a simple cubic lattice and driven by a constant external force. It is coupled to an array of identical, independent thermal reservoirs consisting of free, massless Bose fields, one at each site of the lattice. When the particle visits a site x of the lattice it can emit or absorb field quanta of the reservoir at x. Under the assumption that the coupling between the particle and the reservoirs and the driving force are sufficiently small, we establish the following results: The ergodic average over time of the state of the particle approaches a non-equilibrium steady state (NESS) describing a non-zero mean drift of the particle. Its motion around the mean drift is diffusive, and the diffusion constant and the drift velocity are related to one another by the Einstein relation.
References (23)
- V. Bach, J. Fröhlich, and I. Sigal. Return to equilibrium. J. Math. Phys., 41:3985, 2000.
- L. Bruneau, S. De Bievre, and C.-A. Pillet. Scattering induced current in a tight-binding band. J. Math. Phys., 52(2), 2011.
- Y.C. Chen and J.L. Lebowitz. Quantum particle in a washboard potential. I. Linear mobility and the Einstein relation. Physical Review B, 46(17):10743, 1992.
- E. B. Davies. Linear Operators and their spectra. Cambridge University Press, 2007.
- W. De Roeck and J. Fröhlich. Diffusion of a massive quantum particle coupled to a quasi-free thermal medium. Communications in Mathematical Physics, 303:613-707, 2011.
- W. De Roeck, J. Fröhlich, and K. Schnelli. Quantum diffusion with drift and the Einstein relation II. download from arXiv.
- J. Dereziński. Introduction to Representations of Canonical Commutation and Anticommutation Relations, volume 695 of Lecture Notes in Physics. Springer-Verlag, 2006.
- J. Dereziński and V. Jakšić. Return to equilibrium for Pauli-Fierz systems. Ann. H. Poincaré, 4:739-793, 2003.
- D. Egli, J. Fröhlich Z. Gang, A. Shao, and I.M. Sigal. Hamiltonian dynamics of a particle interacting with a wave field. http://arxiv.org/abs/1211.6154.
- K.-J. Engel and R. Nagel. A short course on operator semigroups. Universitext. Springer, 2006.
- L. Erdös. Linear Boltzmann equation as the long time dynamics of an electron weakly coupled to a phonon field. J. Stat. Phys., 107(85):1043-1127, 2002.
- J. Fröhlich and Z. Gang. On the theory of slowing down gracefully. Pramana, 78(6):865-874, 2012.
- E. Hille and R. S. Phillips. Functional Analysis and Semi-groups, volume XXXI of AMS Colloquium Public- ations. American Mathematical Society, 1957.
- V. Jakšić and C.-A. Pillet. On a model for quantum friction. ii: Fermi's golden rule and dynamics at positive temperature. Comm. Math. Phys., 176:619-644, 1996.
- T. Kato. Perturbation Theory for Linear Operators. Springer, Berlin, second edition, 1976.
- T. Komorowski and S. Olla. On the sector condition and homogenization of diffusions with a gaussian drift. Journal of Functional Analysis, 197(1):179-211, 2003.
- Y. C. Li, R. Sato, and S. Y. Shaw. Convergence theorems and tauberian theorems for functions and sequences in banach spaces and banach lattices. Israel Journal of Mathematics, 162(1):109-149, 2007.
- M. Merkli. Positive commutators in non-equilibrium statistical mechanics. Comm. Math. Phys., 62:223-327, 2001.
- M. Reed and B. Simon. Methods of Modern Mathematical physics, volume 2. Academic Press, New York, 1972.
- W. De Roeck, J. Fröhlich, and A. Pizzo. Quantum Brownian motion in a simple model system. Comm. Math. Phys, 293(2):361-398, 2010.
- W. De Roeck and A. Kupiainen. Diffusion for a quantum particle coupled to phonons. http://arxiv.org/abs/1107.4832.
- M. Sassetti, P. Saracco, E. Galleani d'Agliano, and F. Napoli. Linear mobility for coherent quantum tunneling in a periodic potential. Zeitschrift für Physik B Condensed Matter, 77(3):491-495, 1989.
- U. Weiss and M. Wollensak. Dynamics of the dissipative multiwell system. Physical Review B, 37(5):2729, 1988.