Academia.eduAcademia.edu

Outline

Wave energy: State of the art and current development

2022, Pan-American Journal of Aquatic Sciences

https://doi.org/10.54451/PANAMJAS.17.2.176

Abstract

Currently, wave energy represents a challenge to the world's energy needs. There are innumerable prototypes and even commercial models that reveal the ability to handle the difficulties posed by the sea and obtain electrical energy. However, the implementation of these projects has shown that wave energy is not an easy resource to manipulate. In the economic aspect, the main barriers are given by the high cost of technologies in the prototype phase, as well as their operations. Regarding the technological barriers, the main ones correspond to the technological risk of the prototypes in the testing phase and the lack of specialized human capital that allows the industry to be implemented at a local level. Even so, the inventiveness and initiative of some allow them to work and face adversity with a clear objective: to take advantage of the wave power potential. In the present investigation, an exhaustive study is carried out on wave energy, its current development, techniques and technologies for its exploitation, environmental impacts, and advantages and disadvantages of the use of this renewable energy.

FAQs

sparkles

AI

What factors contribute to wave energy's increased potential in specific regions?add

The research highlights that wave energy potential is highest in locations between 30-60 degrees latitude, particularly along the western coasts of Europe, Canada, and the southern coasts of Australia and South America.

What recent technological advancements have improved wave energy conversion efficiency?add

Innovations such as the AWS-III, which uses flexible membrane absorbers, achieve a maximum power capacity of 2400 kW, significantly enhancing the efficiency of energy conversion from wave action.

How does the Levelized Cost of Energy (LCoE) for wave energy compare to other renewables?add

The estimated LCoE for wave energy ranges from €0.30 to €1.20/kWh, with some innovations suggesting costs below €0.33/kWh, highlighting the need for economic competitiveness against wind and solar.

In what ways can wave energy systems mitigate coastal erosion?add

Wave energy converters (WECs) can act as buffers, absorbing wave energy and potentially reducing shoreline erosion, thereby protecting coastal communities and habitats.

What ecological impacts are associated with wave energy extraction?add

Wave energy systems may disrupt marine life and coastal ecosystems, prompting considerations for ecological balance and potential recovery of local biota after disturbance.

References (69)

  1. Abdelkareem, M. A., Assad, M. E. H., Sayed, E. T. & Soudan, B. 2018. Recent progress in the use of renewable energy sources to power water desalination plants. Desalination, 435: 97-113. https://doi.org/10.1016/j.desal.2017.11.018.
  2. Aderinto, T. & Li, H. 2018. Ocean wave energy converters: Status and challenges. Energies, 11(5): 1250. https://doi.org/10.3390/en11051250.
  3. Aderinto, T. & Li, H. 2019. Review on power performance and efficiency of wave energy converters. Energies, 12(22): 4329. https://doi.org/10.3390/en12224329.
  4. Ahamed, Raju, McKee, K. & Howard, I. 2020. Advancements of wave energy converters based on power take off (PTO) systems: A review. Ocean Engineering, 204: 107248. https://doi.org/10.1016/j.oceaneng.2020.1072
  5. Ahn, S., Haas, K. A. & Neary, V. S. 2019. Wave energy resource classification system for US coastal waters. Renewable and Sustainable Energy Reviews, 104: 54-68. https://doi.org/10.1016/j.rser.2019.01.017.
  6. Akpınar, A., Jafali, H. & Rusu, E. 2019. Temporal variation of the wave energy flux in hotspot areas of the Black Sea. Sustainability, 11(3): 562. https://doi.org/10.3390/su11030562.
  7. Al Shami, E., Zhang, R. & Wang, X. 2019. Point absorber wave energy harvesters: A review of recent developments. Energies, 12(1): 47. https://doi.org/10.3390/en12010047.
  8. AWS-III. 2022. Open Energy Information OpenEI, accessible at: https://openei.org/wiki/PRIMRE/Databases/P rojects_Database/Devices/AWS-III. (Accessed 02/12/2022).
  9. Babarit, A. 2017. Ocean wave energy conversion: resource, technologies and performance. Elsevier, 245 p.
  10. Belibassakis, K., Bonovas, M. & Rusu, E. 2018. A novel method for estimating wave energy converter performance in variable bathymetry regions and applications. Energies, 11(8): 2092. https://doi.org/10.3390/en11082092.
  11. Benbouzid, M., Amirat, Y. & Elbouchikhi, E. (Eds. ). 2020. Marine Tidal and Wave Energy Converters: Technologies, Conversions, Grid Interface, Fault Detection, and Fault- Tolerant Control. MDPI.
  12. Bento, A. R., Martinho, P. & Soares, C. G. 2018. Wave energy assessement for Northern Spain from a 33-year hindcast. Renewable Energy, 127: 322-333. https://doi.org/10.1016/j.renene.2018.04.049.
  13. Bergillos, R. J., Rodriguez-Delgado, C., Allen, J. & Iglesias, G. 2019. Wave energy converter geometry for coastal flooding mitigation. Science of The Total Environment, 668: 1232-1241. https://doi.org/10.1016/j.scitotenv.2019.03.02
  14. Bergillos, R. J., Rodriguez-Delgado, C. & Iglesias, G. 2020. Ocean Energy and Coastal Protection: A Novel Strategy for Coastal Management Under Climate Change. first ed. Springer International.
  15. Bozzi, S., Besio, G. & Passoni, G. 2018. Wave power technologies for the Mediterranean offshore: Scaling and performance analysis. Coastal Engineering, 136: 130-146. https://doi.org/10.1016/j.coastaleng.2018.03.0 01. Bracco, G., Canale, M. & Cerone, V. 2020. Optimizing energy production of an Inertial Sea Wave Energy Converter via Model Predictive Control. Control Engineering Practice, 96: 104299. https://doi.org/10.1016/j.conengprac.2020.104 299. Carballo, R., Arean, N., Álvarez, M., López, I., Castro, A., López, M. & Iglesias, G. 2019. Wave farm planning through high-resolution resource and performance characterization. Renewable Energy, 135: 1097-1107. https://doi.org/10.1016/j.renene.2018.12.081. CETO 6. 2022. Open Energy Information OpenEI, accessible at: https://openei.org/wiki/PRIMRE/Databases/T echnology_Database/Devices/CETO_6. (Accessed 02/12/2022).
  16. Chang, G., Jones, C. A., Roberts, J. D. & Neary, V. S. 2018. A comprehensive evaluation of factors affecting the levelized cost of wave energy conversion projects. Renewable energy, 127: 344-354. https://doi.org/10.1016/j.renene.2018.04.071.
  17. Christensen, L. A. R. S., Friis-Madsen, E. & Kofoed, J. P. 2005. The wave energy challenge: the wave dragon case. In Proceedings of the POWER-GEN 2005 Europe Conference: Milan, Italy, June 2005.
  18. Clark, C. E., Miller, A. & DuPont, B. 2019. An analytical cost model for co-located floating wind-wave energy arrays. Renewable Energy, 132: 885-897. https://doi.org/10.1016/j.renene.2018.08.043.
  19. Clemente, D., Rosa-Santos, P. & Taveira-Pinto, F. 2021. On the potential synergies and applications of wave energy converters: A review. Renewable and Sustainable Energy Reviews, 135: 110162. https://doi.org/10.1016/j.rser.2020.110162.
  20. De Carlo, M., Ardhuin, F., & Le Pichon, A. 2020. Atmospheric infrasound generation by ocean waves in finite depth: unified theory and application to radiation patterns. Geophysical Journal International, 221(1): 569-585. https://doi.org/10.1093/gji/ggaa015.
  21. Eco Wave Power. 2022a. Wave Energy Company, accessible at: https://www.ecowavepower.com/future-projects/. (Accessed 02/12/2022).
  22. EMEC. 2022. European Marine Energy Centre Ltd., accessible at: https://www.emec.org.uk/. (Accessed 02/12/2022).
  23. Faÿ, F. X., Kelly, J., Henriques, J., Pujana, A., Abusara, M., Mueller, M. & Ruiz-Minguela, P. 2018. Numerical simulation of control strategies at mutriku wave power plant. In International Conference on Offshore Mechanics and Arctic Engineering (Vol. 51319, p. V010T09A029). American Society of Mechanical Engineers. https://doi.org/10.1115/OMAE2018-78011.
  24. Fernández Díez, P. 2005. Energía de las Olas. In Departamento de Ingeniería Eléctrica y Energética, Universidad de Cantabria. GEL. 2022. Open Energy Information OpenEI, accessible at: https://openei.org/wiki/PRIMRE/Databases/P rojects_Database/Devices/GEL. (Accessed 02/12/2022).
  25. Guillou, N. & Chapalain, G. 2018. Annual and seasonal variabilities in the performances of wave energy converters. Energy, 165: 812- 823. https://doi.org/10.1016/j.energy.2018.10.001.
  26. Guillou, N., Lavidas, G., & Chapalain, G. 2020. Wave Energy Resource Assessment for Exploitation-A Review. Journal of Marine Science and Engineering, 8(9): 705. https://doi.org/10.3390/jmse8090705.
  27. Gunn, K. & Stock-Williams, C. 2012. Quantifying the global wave power resource. In Renewable Energy (Vol. 44, pp. 296-304). Elsevier BV. https://doi.org/10.1016/j.renene.2012.01.101.
  28. Ibarra-Berastegi, G., Sáenz, J., Ulazia, A., Serras, P., Esnaola, G. & Garcia-Soto, C. 2018. Electricity production, capacity factor, and plant efficiency index at the Mutriku wave farm (2014-2016). Ocean Engineering, 147: 20-29. https://doi.org/10.1016/j.oceaneng.2017.10.0
  29. Idárraga, A. J. P., Diaz, H., & Peñaranda, J. A. P. 2018. Viabilidad técnica de tecnologías para aprovechamiento de la energía undimotriz en la costa del pacifico colombiano. Revista Avances: Investigación En Ingeniería, 15(1): 286-301. https://doi.org/10.18041/1794- 4953/avances.1.4740. IPCC. 2021. Summary for Policymakers. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press. In Press.
  30. Jakimavičius, D. Kriaučiūnienė, J. & Šarauskienė, D. 2018. Assessment of wave climate and energy resources in the Baltic Sea nearshore (Lithuanian territorial water). Oceanologia, 60(2): 207-218. https://doi.org/10.1016/j.oceano.2017.10.004. Kamranzad, B. & Hadadpour, S. 2020. A multi- criteria approach for selection of wave energy converter/location. Energy, 204: 117924. https://doi.org/10.1016/j.energy.2020.117924.
  31. Kamranzad, B. & Takara, K. 2020. A climate- dependent sustainability index for wave energy resources in Northeast Asia. Energy, 209: 118466. https://doi.org/10.1016/j.energy.2020.118466. Khare, V., Nema, S. & Baredar, P. 2020. Ocean Energy Modeling and Simulation with Big Data: Computational Intelligence for System Optimization and Grid Integration. Butterworth-Heinemann. Elsevier.
  32. Kim, D., Poguluri, S. K., Ko, H. S., Lee, H. & Bae, Y. H. 2019. Numerical and experimental study on linear behavior of salter's duck wave energy converter. Journal of Ocean Engineering and Technology, 33(2): 116- 122. https://doi.org/10.26748/KSOE.2019.023.
  33. Leijon, J. & Boström, C. 2018. Freshwater production from the motion of ocean waves-A review. Desalination, 435: 161-171. https://doi.org/10.1016/j.desal.2017.10.049. Lin, Y., Dong, S., Wang, Z. & Soares, C. G. 2019. Wave energy assessment in the China adjacent seas on the basis of a 20-year SWAN simulation with unstructured grids. Renewable Energy, 136: 275-295. https://doi.org/10.1016/j.renene.2019.01.011. López-Ruiz, A., Bergillos, R. J., Lira-Loarca, A. & Ortega-Sánchez, M. 2018a. A methodology for the long-term simulation and uncertainty analysis of the operational lifetime performance of wave energy converter arrays. Energy, 153: 126-135. https://doi.org/10.1016/j.energy.2018.04.018. López-Ruiz, A., Bergillos, R. J., Raffo-Caballero, J. M. & Ortega-Sánchez, M. 2018b. Towards an optimum design of wave energy converter arrays through an integrated approach of life cycle performance and operational capacity. Applied Energy, 209: 20-32. https://doi.org/10.1016/j.apenergy.2017.10.06
  34. Maria-Arenas, A., Garrido, A. J., Rusu, E. & Garrido, I. 2019. Control strategies applied to wave energy converters: state of the art. Energies, 12(16): 3115. https://doi.org/10.3390/en12163115.
  35. Martinez, A. & Iglesias, G. 2020. Wave exploitability index and wave resource classification. Renewable and Sustainable Energy Reviews, 134: 110393. https://doi.org/10.1016/j.rser.2020.110393.
  36. Mattiazzo, G. 2019. State of the Art and Perspectives of Wave Energy in the Mediterranean Sea: Backstage of ISWEC. Frontiers in Energy Research, 7: 114. https://doi.org/10.3389/fenrg.2019.00114.
  37. Maurya, A. K. & Singh, S. P. 2020. Assessment of ocean wave energy converters for Indian Coastal Region. IETE Technical Review, 37(5): 476-488. https://doi.org/10.1080/02564602.2019.16591
  38. Medina-López, E., Moñino, A., Bergillos, R. J., Clavero, M. & Ortega-Sánchez, M. 2019. Oscillating water column performance under the influence of storm development. Energy, 166: 765-774. https://doi.org/10.1016/j.energy.2018.10.108. Melville, W. K. 2018. Wind-wave breaking. Procedia IUTAM, 26: 30-42. https://doi.org/10.1016/j.piutam.2018.03.004
  39. Mishra, S. K., Mohanta, D. K., Appasani, B. & Kabalcı, E. 2021. OWC-Based Ocean Wave Energy Plants: Modeling and Control. Springer Nature Singapore.
  40. Moñino, A., Medina-López, E., Bergillos, R. J., Clavero, M., Borthwick, A. & Ortega- Sánchez, M. 2018. Thermodynamics and morphodynamics in wave energy. Cham: Springer International Publishing.
  41. Morim, J., Cartwright, N., Hemer, M., Etemad- Shahidi, A. & Strauss, D. 2019. Inter-and intra-annual variability of potential power production from wave energy converters. Energy, 169: 1224-1241. https://doi.org/10.1016/j.energy.2018.12.080. Nagababu, G., Patel, R., Moideenkunju, S., Bhasuru, A. S. Kachhwaha, S. S. Surisetty, V. V. & Aic Bhowmick, S. 2018. Estimation of technical wave energy potential in exclusive economic zone of India. In ASME 2018 37th International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers Digital Collection.
  42. Neill, S. P., & Hashemi, M. R. 2018. Fundamentals of ocean renewable energy: generating electricity from the sea. Academic Press.
  43. Neptune. 2022. Neptune Model 3.1. Open Energy Information OpenEI, accessible at: https://openei.org/wiki/PRIMRE/Databases/P rojects_Database/Devices/ Neptune_Model_3.1. (Accessed 02/12/2022).
  44. Nguyen, H. P., Wang, C. M., Tay, Z. Y. & Luong, V. H. 2020. Wave energy converter and large floating platform integration: A review. Ocean Engineering, 213: 107768. https://doi.org/10.1016/j.oceaneng.2020.1077
  45. Østergaard, P. A., Duic, N., Noorollahi, Y. & Kalogirou, S. 2020. Latest progress in Sustainable Development using renewable energy technology. Renewable Energy, 162: 1554-1562. https://doi.org/10.1016/J.RENENE.2020.09.1
  46. Patel, R. P., Nagababu, G., Kumar, S. V. A., Seemanth, M. & Kachhwaha, S. S. 2020. Wave resource assessment and wave energy exploitation along the Indian coast. Ocean Engineering, 217: 341-353. https://doi.org/10.1016/j.oceaneng.2020.1078
  47. Pecher, A., & Kofoed, J. P. 2017. Handbook of ocean wave energy. Springer.
  48. Pelamis Wave Power. 2022. Pelamis Wave Power. Accessible at: https://www.emec.org.uk/about- us/wave-clients/pelamis-wave-power/. (Accessed 02/12/2022).
  49. Power Buoy. 2022. Ocean Power Technology, accessible at: https://oceanpowertechnologies.com/ pb3- powerbuoy/. (Accessed 02/12/2022).
  50. Prieto, L. F., Rodríguez, G. R. & Rodríguez, J. S. 2019. Wave energy to power a desalination plant in the north of Gran Canaria Island: Wave resource, socioeconomic and environmental assessment. Journal of environmental management, 231: 546-551. https://doi.org/10.1016/j.jenvman.2018.10.07
  51. Rodriguez-Delgado, C., Bergillos, R. J. & Iglesias, G. 2019. An artificial neural network model of coastal erosion mitigation through wave farms. Environmental Modelling & Software, 119: 390-399. https://doi.org/10.1016/j.envsoft.2019.07.010.
  52. Rusu, E. & Onea, F. 2018. A review of the technologies for wave energy extraction. Clean Energy, 2(1): 10-19. https://doi.org/10.1093/ce/zky003.
  53. Rusu, L. & Rusu, E. 2021. Evaluation of the Worldwide Wave Energy Distribution Based on ERA5 Data and Altimeter Measurements. Energies 2021, 14: 394. https://doi.org/10.3390/en14020394.
  54. Samad, A. & Suchithra, R. 2021. Marine power technology-wave energy. In Sustainable Fuel Technologies Handbook (pp. 241-267). Academic Press. https://doi.org/10.1016/B978-0-12-822989- 7.00009-3
  55. Seabased. 2022. Seabased WEC. Open Energy Information OpenEI, accessible at: https://openei.org/wiki/PRIMRE/Databases/P rojects_Database/Devices/Seabased_WEC. (Accessed 02/12/2022).
  56. Sheng, W. 2019. Wave energy conversion and hydrodynamics modelling technologies: A review. Renewable and Sustainable Energy Reviews, 109: 482-498. https://doi.org/10.1016/j.rser.2019.04.030.
  57. Sirigu, S. A., Bonfanti, M., Begovic, E., Bertorello, C., Dafnakis, P., Giorgi, G., Bracco, G. & Mattiazzo, G. 2020. Experimental Investigation of the Mooring System of a Wave Energy Converter in Operating and Extreme Wave Conditions. Journal of Marine Science and Engineering 2020, 8(3):
  58. https://doi.org/10.3390/jmse8030180.
  59. Soukissian, T., Karathanasi, F., Belibassakis, K., & Kontoyiannis, H. 2020. Marine Renewable Energy in the Greek Seas. In The Handbook of Environmental Chemistry (pp. 1-22). Springer: Berlin/Heidelberg, Germany.
  60. Triasdian, B., Indartono, Y. S. & Ningsih, N. S. 2018. Energy capture potential of existing wave energy converters for Indonesian sea. In AIP Conference Proceedings (Vol. 1984, No. 1, p. 030002). AIP Publishing LLC.
  61. Ulazia, A., Esnaola, G., Serras, P. & Penalba, M. 2020. On the impact of long-term wave trends on the geometry optimisation of oscillating water column wave energy converters. Energy, 206: 118146. https://doi.org/10.1016/j.energy.2020.118146.
  62. Wang, R. Q., & Ning, D. Z. 2020. Dynamic analysis of wave action on an OWC wave energy converter under the influence of viscosity. Renewable Energy, 150: 578-588. https://doi.org/10.1016/j.renene.2020.01.007. Wavestar. 2022. Accessible at: http://www.wavestarenergy.com/. (Accessed 02/12/2022).
  63. Weiss, C. V., Guanche, R., Ondiviela, B., Castellanos, O. F. & Juanes, J. 2018. Marine renewable energy potential: A global perspective for offshore wind and wave exploitation. Energy Conversion and Management, 177: 43-54. https://doi.org/10.1016/j.enconman.2018.09.0
  64. Wello Oy. 2022. The Future of Wave Energy, accessible at: https://wello.eu/(Accessed 02/12/2022).
  65. Wilberforce, T., El Hassan, Z., Durrant, A., Thompson, J., Soudan, B. & Olabi, A. G. 2019. Overview of ocean power technology. Energy, 175: 165-181. https://doi.org/10.1016/j.energy.2019.03.068.
  66. Xu, S., Wang, S. & Soares, C. G. 2019. Review of mooring design for floating wave energy converters. Renewable and Sustainable Energy Reviews, 111: 595-621. https://doi.org/10.1016/j.rser.2019.05.027
  67. Yang, S., Duan, S., Fan, L., Zheng, C., Li, X., Li, H., & Feng, M. 2019. 10-Year Wind and Wave Energy Assessment in the North Indian Ocean. Energies, 12(20): 3835. https://doi.org/10.3390/en12203835.
  68. Yongsoo OWC. 2022. Open Energy Information OpenEI, accessible at: https://openei.org/wiki/PRIMRE/Databases/P rojects_Database/Devices/Yongsoo_OWC/. (Accessed 02/12/2022).
  69. Zakharov, V. 2018. Analytic theory of a wind-driven sea. Procedia IUTAM, 26: 43-58. https://doi.org/10.1016/j.piutam.2018.03.005.