Academia.eduAcademia.edu

Outline

The space of initial conditions for linearisable mappings

2002, arXiv (Cornell University)

Abstract

We apply the algebraic-geometric techniques developed for the study of mappings which have the singularity confinement property to mappings which are integrable through linearisation. The main difference with respect to the previous studies is that the linearisable mappings have generically unconfined singularities. Despite this fact we are able to provide a complete description of the dynamics of these mappings and derive rigorously their growth properties.

References (18)

  1. Ramani A, Grammaticos B and Hietarinta J 1991 Discrete versions of the Painlevé equations Phys. Rev. Lett. 67 1829-1832
  2. Grammaticos B, Ramani A and Papageorgiou V 1991 Do integrable mappings have the Painlevé property? Phys. Rev. Lett. 67 1825-1827
  3. Hietarinta J and Viallet C M 1997 Singularity confinement and chaos in discrete systems Phys. Rev. Lett. 81 325-328
  4. Bellon M P and Viallet C M 1999 Algebraic entropy Commun. Math. Phys. 204 425-437
  5. Gizatullin M H 1980 Rational G-surfaces Izv. Akad. Nauk SSSR Ser. Mat. 44 no.1 110-144
  6. Arnold V I 1990 Dynamics of complexity of intersections Bol. Soc. Bras. Mat. 21 1-10
  7. Cantat S 1999 Dynamique des automorphismes des surfaces projectives complexes. C. R. Acad. Sci. Paris Sr. I Math. 328 no.10 901-906
  8. Sakai H 2001 Rational surfaces associated with affine root systems and geometry of the Painlevé equations Commun. Math. Phys. 220 165-229
  9. Okamoto K 1979 Sur les feuilletages associés aux équations du second ordre à points critiques fixes de P.Painlevé (French) Japan J. Math. 5 1-79
  10. Takenawa T 2001 A geometric approach to singularity confinement and algebraic entropy J. Phys. A: Math. Gen. 34 L95-L102
  11. Takenawa T 2001 Algebraic entropy and the space of initial conditions for discrete dynamical systems J. Phys. A: Math. Gen. 34 10533-10545
  12. Takenawa T 2001 Discrete dynamical systems associated with root systems of indef- inite type Commun. Math. Phys. 224 657-681
  13. Ramani A, Grammaticos B, Lafortune S and Ohta Y 2000 Linearizable mappings and the low-growth criterion J. Phys. A: Math. Gen. 33 L287-L292
  14. Ramani A, Ohta Y and Grammaticos B 2000 Discrete integrable systems from con- tinuous Painlevé equations through limiting procedures Nonlinearity 13 1073-1085
  15. Sibony N 1999 Dynamique des applications rationnelles de P k (Panor. Synthsès, 8) 97-185 (Paris: Soc. Math. France)
  16. Diller J A and Favre C 2001 Dynamics of bimeromorphic maps of surfaces Amer. J. Math. 123 no.6 1135-1169
  17. Beauville A 1996 Complex algebraic Surfaces 2nd edn. (Cambridge: Cambridge Uni- versity Press)
  18. Fulton W 1984 Intersection theory, vol.2 Ergebnisse der Mathmatik und ihrer Gren- zgebiete (3) (Berlin: Springer-verlag)