Academia.eduAcademia.edu

Outline

Towards the Automatic Acoustical Avian Monitoring System

2017, Science, Technology and Innovation

Abstract

One of the crucial aspects of the environmental protection is continuous monitoring of environment. Specific aspect is estimation of the bird species population. It is particularly important for bird species being in danger of extinction. Avian monitoring programs are time and money consuming actions which usually base on terrain expeditions. Certain remedy for this can be automatic acoustical avian monitoring system, described in the paper. Main components of the designed system are: digital audio recorder for bird voices acquisition, computer program automatically recognizing bird species by its signals emitted (voices or others) and object-relational database accessed via the Internet. Optional system components can be: digital camera and camcorder, bird attracting device, wireless data transmission module, power supply with solar panel, portable weather station. The system records bird voices and sends the recordings to the database. Recorded bird voices can be also provoked by ...

References (30)

  1. Directive 2009/147/EC of the European Parlia- ment and of the Council of 30 November 2009 on the conservation of wild birds.
  2. Council Directive 92/43/EEC on the Conserva- tion of natural habitats and of wild fauna and flora 1992.
  3. C. Bibby, N. Burgess, D. Hill, S. Mustoe, Bird Census Techniques. Elsevier 2007.
  4. A. Lisowska-Lis, R. Wielgat, D. Król, T. Po- tempa, Acoustical Bird Monitoring System - Recordigns Methodology and Speceis Chosen for Recordings. 5th International Conference on Interdisciplinarity in Education 6-8 May 2010, Tallinn, Estonia.
  5. D. Król, R. Wielgat, T. Potempa, A. Lisow- ska-Lis, Acoustical Bird Monitoring System -Elec-tronic Equipment. 5th International Con- ference on Interdisciplinarity in Education 6-8 May 2010, Tallinn, Estonia.
  6. T. Potempa, R. Wielgat, A. Lisowska-Lis, D. Król, Acoustical Bird Monitoring System - Data Base Aided Signal Recognition. 5th In- ternational Conference on Interdisciplinarity in Education 6-8 May 2010. Tallinn, Estonia.
  7. H. Tyagi, R. M. Hegde, H. A. Murthy, A. Pra- bhakar Automatic identification of bird calls using spectral ensemble average voiceprints. Proceedings of the 13th European Signal Pro- -cessing Conference (EUSIPCO '06), Florence, Italy, September 2006.
  8. Ch.-H. Chou, Ch.-H. Lee, H.-W Ni, Bird Spe- cies Recognition by Comparing the HMMs of the Syllables. ICICIC, pp.143, Second Interna- tional Conference on Innovative Computing, Information and Control (ICICIC 2007), 2007.
  9. C. Kwan, K. Ho, An Automated Acoustic Sys- tem to Monitor and Classify Birds. Bird Strike Committee Proceedings, 5th Joint Annual Me- eting, Toronto, ONT, 2003.
  10. J.-M. Valin, F. Michaud, J. Rouat, D. Létour- neau, Robust sound source localization using a microphone array on a mobile robot. in Proce- edings International Conference on Intelli-gent Robots and Systems, 2003.
  11. D. Król, On superiority of Successive Appro- ximation Register over Sigma Delta AD con- -verter in standard audio measurements using Maximum Length Sequences. International Conference on Signals and Electronic Systems, ICSES'08, 14-17 September 2008, Kraków, Po- land.
  12. D. Król, Choice of analog-to-digital converters for audio measurements using MLS algorithm. 15th European Signal Processing Conference, EUSIPCO 2007, 3-7 September 2007, Poznań, Poland.
  13. D. Król, R. Wielgat, T. Potempa, P. Świętojań- ski, Analysis of Ultrasonic Components in Vo- ices of Chosen Bird Species, Forum Acusticum 2011, 26 June-1 July 2011, Aalborg, Denmark.
  14. R. Wielgat, T. P. Zieliński, T. Potempa, A. Li- sowska-Lis and D. Król, Signal Processing Algorithms, Architectures, Arrangements, and Applications, 2007, 129-134.
  15. Ch.-H. Lee, Y.-K. Lee, R.-Z Huang. Journal of Information Technology and Applications, 2006, 1, 17-23.
  16. T. Potempa, R. Wielgat, D. Król, P. Kozioł, A. Lisowska-Lis, STUDIA INFORMATICA. Ze- szyty Naukowe Politechniki Śląskiej, seria IN- FORMATYKA, 2010, 31 (2A), 375-391.
  17. R. Wielgat, T. Potempa, P. Świętojański and D. Król, "On using prefiltration in HMM-based bird species recognition," 2012 International Conference on Signals and Electronic Systems (ICSES), Wroclaw, 2012, 1-5.
  18. T. Fawcett, Pattern Recognition Letters, 2006, 27, 861-874.
  19. G. Mirzaei, M. M. Jamali, J. Ross, P. V. Gorse- vski and V. P. Bingman, IEEE Sensors Journal, 2015, 15, 6625-6632.
  20. C. wa Maina, D. Muchiri, P. Njoroge, Biodiver- sity Data Journal, 2016, 4, e9906.
  21. D. T. Blumstein, D. J. Mennill, P. Clemins, L. Girod, K. Yao, G. Patricelli, J. L. Deppe, A. H. Krakauer, C. Clark, K. A. Cortopassi, S. F. Hanser, B. McCowan, A. M. Ali, A. N. G. Kirschel, Journal of Applied Ecology, 2011, 48, 758-767.
  22. C. E. Sanders and D. J. Mennill, Ornithological Applications, 2016, 116, 371-383.
  23. M. A. Pryde, T. C. Greene, New Zealand Jour- nal of Ecology, 2016, 40, 100-107.
  24. T. A. Mitchell et al. "Real-Time Bioacoustics Monitoring and Automated Species Iden-tifica- tion." Ed. Xiaolei Huang. PeerJ 1 (2013): e103. PMC. Web. 10 Apr. 2017.
  25. E. C. Leach, C. J. Burwell, L. A. Ashton, D. N. Jones, R. L. Kitching, (2016) Comparison of point counts and automated acoustic monito- ring: detecting birds in a rainforest biodiversity survey. Emu 116, 305-309.
  26. A. Boulmaiz, D. Messadeg, N. Doghmane, et al., International Journal of Speech Technolo- gy, 2016, 19, 631-645.
  27. S. C. Prevost, Estimating Avian Populations with Passive Acoustic Technology and Song Behavior. Master's Thesis, University of Ten- nessee, 2016.
  28. J. Salamon, J. P. Bello, A. Farnsworth, M. Rob- bins, S. Keen, H. Klinck, et al., PLoS ONE, 2016, 11(11): e0166866.
  29. K.A. Williams, E.M. Adams, J. Fiely, D. Yates, P.B. Chilson, C. Kuster, D.C. Evers. 2013. Mi- gratory Bird and Bat Monitoring in the Tho- usand Islands Region of New York State: Final Report, March 2013. Report to the U.S. Fish and Wildlife Service Columbus, Ohio Field Office. Report BRI 2013-11, Biodiversity Rese- arch Institute, Gorham, Maine.
  30. S. Duan, Automated species recognition in environmental recordings, PhD thesis, Queen- sland University of Technology, 2014.