Academia.eduAcademia.edu

Outline

Representative of the Office of Graduate Studies

2009

Abstract

A quantum logic gate of particular interest to both electrical engineers and game theorists is the quantum multiplexer. This shared interest is due to the facts that an arbitrary quantum logic gate may be expressed, up to arbitrary accuracy, via a circuit consisting entirely of variations of the quantum multiplexer, and that certain one player games, the history dependent Parrondo games, can be quantized as games via a particular variation of the quantum multiplexer. However, to date all such quantizations have lacked a certain fundamental game theoretic property. The main result in this dissertation is the development of quantizations of history dependent quantum Parrondo games that satisfy this fundamental game theoretic property. Our approach also yields fresh insight as to what should be considered as the proper quantum analogue of a classical Markov process and gives the first game theoretic measures of multiplexer behavior. QUANTUM MULTIPLEXERS, PARRONDO GAMES, AND PROPER

References (38)

  1. Figure 4.2: A uniformly (n -1)-controlled R y rotation for 2-valued quantum logic. The • control turns on for control value |0 and the • control turns on for control value |1 . It requires 2 n-1 one qubit controlled gates R θ i y to implement a uniformly (n -1)-controlled R y rotation. REFERENCES
  2. A. Ahmed, S. A. Bleiler, and F. S. Khan. Three player, Two Strategy, Maximally Entangled Quantum Games. Proceeding of the 9 th International Pure Math Con- ference, Islamabad, Pakistan, 2008. 9, 90
  3. S. D. Bartlett, H. de Guise, and B. C. Sanders. Quantum encodings in spin systems and harmonic oscillators. Physical Review A, Volume 65, Issue 5, 2002. 68
  4. K. Binmore. Fun and Games: A Text on Game Theory. D.C. Heath, 1991. 21
  5. A. Bjorck and G. H. Golub. Numerical Methods for Computing Angles between Linear Subspaces. Mathematics of Computation Volume 27, pages 579-594, 1973. 70
  6. S. A. Bleiler. A Formalism for Quantum Games and an Application. Proceeding of the 9 th International Pure Math Conference, Islamabad, Pakistan, 2008. 2, 21
  7. S. Bone and M. Castro. A Brief History of Quantum Computing. Imperial College London, http://www.doc.ic.ac.uk/∼nd/surprise 97/journal/vol4/spb3s. 3
  8. S. Bullock, D. P. O'Leary, and G. K. Brennen. Asymptotically Optimal Quantum Circuits for d-level Systems. Physical Review Letters, Volume 94, 230502, 2005. 69
  9. J. Daboul, X. Wang, and B. Sanders. Quantum Gates on Hybrid Qudits. Journal of Physics A: Mathematical and General, pages 2525-2536, 2003. 68
  10. D. Deutsch and R. Jozsa. Rapid Solutions of Problems by Quantum Computation. Proceedings of the Royal Society of London A, 439, pages 553558, 1992. 2
  11. J. Eisert, M. Wilkens, and M. Lewenstein. Quantum Games and Quantum Strate- gies. Physical Review Letters, Volume 83, pages 3077-3080, 1999. 2
  12. A. P. Flitney, J. Ng, and D. Abbott. Quantum Parrondos Games. Physica A, Volume 314, pages 35-42, 2002. 32, 33, 45, 47, 52
  13. References
  14. G. H. Golub and C. F. Van Loan. Matrix computations. John Hopkins University Press, 1989. 79
  15. L. K. Grover. Quantum Mechanics Helps in Searching for a Needle in a Haystack. Physical Review Letters, Volume 79, pages 325-328, 1997. 2, 14
  16. G. P. Harmer and D. Abbott. A Review of Parrondo's Paradox. Fluctuation and Noise Letters, Volume 2, Number 2, 2002. 33
  17. R. J. Kay and N. F.Johnson. Winning combinations of History-Dependent Games. Physical Review E 67, Issue 5, 2003. 43
  18. F. S. Khan and M. A. Perkowski. Synthesis of Ternary Quantum Logic Circuits by Decomposition. Proceedings of the 7th International Symposium on Representa- tions and Methodology of Future Computing Technologies, pages 114-117, 2005. 69, 71, 75
  19. F. S. Khan and M. A. Perkowski. Synthesis of Multi-qudit Hybrid and d-Valued Quantum Logic Circuits by Decomposition. Theoretical Computer Science, Vol- ume 367, Issue 3, pages 336-346, 2006. 46, 69
  20. S. E. Landsburg. Nash Equilibria in Quantum Games. PUniversiy of Rochester, Working paper No. 524, http://www.rcer.econ.rochester.edu/RCERPAPERS/, 2006. 2, 9, 90
  21. L. Marinatto and T. Weber. A Quantum Approach to Static Games of Complete Information. Physical Letters A, Volume 272, Issues 5-6, pages 291-303, 2000. 2
  22. D. A. Meyer. Quantum Strategies. Physical Review Letters, Volume 82, pages 1052-1055, 1999. 47, 53
  23. D. A. Meyer. Noisy Quantum Parrondo Games. Proceedings of SPIE, Volume 5111, page 344, 2003. 33
  24. M. Mottonen, J. J. Vartiainen, V. Bergholm, and M. M. Salomaa. Quantum Circuits for General Multiqubit Gates. Physical Review Letters, Volume 93, Number 13, 130502, 2004. 69, 71
  25. A. Muthukrishnan and C. R. Stroud Jr. Multi-valued Logic Gates for Quantum Computation. Physical Review A, Volume 62, 052309, 2000. 68, 77
  26. R. B. Myerson. Game Theory: Analysis of Conflict. Harvard University Press, 1991. 21
  27. J. Nash. Equilibrium Points in n-Person Games. Proceedings of the National Academy of Sciences of the United States of America, Volume 36, Issue 1, pages 48-49, 1950. 21, 26
  28. M. A. Nielsen and I. L. Chuang. Quantum Computation and Quantum Information. Cambridge University Press, 2000. 3
  29. M. Oskin. Quantum Computing-Lecture Notes. Department of Computer Science and Engineering, University of Washington, http://www.cs.washington.edu/homes/oskin. 3, 20
  30. C. C. Paige and M. Wie. History and generality of the CS decomposition. Linear Algebra and its Applications, Volume 208-209, pages 303-326, 1994. 70
  31. J. M. R. Parrondo, G. Harmer, and D. Abbott. New Paradoxical Games Based on Brownian Ratchets. Physical Review Letters, Volume 85, 5226, 2000. 32, 33, 37
  32. Juan M. R. Parrondo, Gregory P. Harmer, and Derek Abbott. New Paradoxical Games Based on Brownian Ratchets. Physical Review Letters, Volume 85, Num- ber 24, 2000. 44, 45
  33. V. Shende, S. Bullock, and I. Markov. Synthesis of Quantum Logic Circuits. IEEE Transactions on Computer Aided Design, Volume 25, Number 6, pages 1000-1010, 2006. 69, 71
  34. P. W. Shor. Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer. SIAM Journal on Scientific and Statistical Computing, 1997. 2, 14
  35. G. W. Stewart. Computing the CS Decomposition of a Partitioned Orthogonal Matrix. Numerische Mathematik, Volume 40, pages 297-306, 1982. 70
  36. G. W. Stewart and J. Sun. Matrix perturbation theory. Academic Press Inc, 1990. 70, 112
  37. T. Tilma and E. C. G. Sudarshan. Generalized Euler Angle Parameterization for SU(N). Journal of Physics A: Mathematics and General, Volume 35, pages 10467- 10501, 2002. 69
  38. R. Tucci. Rudimentary Quantum Compiler. http://arxiv.org/abs/quant-ph/9805015, 1998. 71