Academia.eduAcademia.edu

Outline

Fe b 20 02 Quantum Parrondo ’ s Games

2002

Abstract

Parrondo’s Paradox arises when two losing games are combined to produce a winning one. A history dependent quantum Parrondo game is studied where the rotation operators that represent the toss of a classical biased coin are replaced by general SU(2) operators to transform the game into the quantum domain. In the initial state, a superposition of qubits can be used to couple the games and produce interference leading to quite different payoffs to those in the classical case. pacs: 03.67.-a, 02.50.le keywords: quantum games, Parrondo’s paradox

References (26)

  1. J. von Neumann, Appl. Math. Ser. 12 (1951) 36.
  2. D.A. Meyer, Phys. Rev. Lett. 82, (1999) 1052; in the AMS Contempo- rary Mathematics volume: Quantum Computation and Quantum Infor- mation Science (to be published).
  3. J. Ng and D. Abbott in Annals of the International Society on Dynamic Games, edited by A. Nowac (Birkhauser, submitted).
  4. J. Eisert, M. Wilkens and M. Lewenstein, Phys. Rev. Lett. 83, (1999) 3077; 87 (2001) 069802; J. Eisert and M. Wilkens, J. Mod. Opt. 47, (2000) 2543.
  5. S.C. Benjamin and P.M. Hayden, Phys. Rev. Lett. 87 (2001) 069801.
  6. Hui Li, Xiaodong Xu, Mingjun Shi, Jihiu Wu and Rongdian Han, quant- ph/0104087.
  7. Jiangfeng Du, Hui Li, Xiaodong Xu, Mingjun Shi and Xiangi Zhou, quant-ph/0110122.
  8. A. Iqbal and A.H. Tour, Phys. Lett. A 280 (2001) 249.
  9. L. Marinatto and T. Weber, Phys. Lett. A 272 (2000) 291; 277 (2000) 183.
  10. Jiangfeng Du, Xiaodong Xu, Hui Li, Xianyi Zhou and Rongdian Han, quant-ph/0010050; quant-ph/0103004.
  11. Chuan-Feng Li, Yong-Sheng Zhang, Yun-Feng Huang and Guang-Can Guo, Phys. Lett. A 280 (2001) 257.
  12. A.P. Flitney and D. Abbott, quant-ph/0109035 (submitted to Phys. Rev. A).
  13. A. Iqbal and A.H. Tour, quant-ph/0104091; quant-ph/0106056.
  14. Jiangfeng Du, Hui Li, Xiaodong Xu, Mingjun Shi, Xianyi Zhou and Rongdian Han, quant-ph/0010092.
  15. S.C. Benjamin and P.M. Hayden, quant-ph/0007038.
  16. R. Kay, N.F. Johnson and S.C. Benjamin, quant-ph/0102008.
  17. A. Iqbal and A.H. Toor, Phys. Lett. A 286 (2001) 245; quant- ph/0103085; quant-ph/0106135; quant-ph/0111090.
  18. N.F. Johnson, Phys. Rev. A 63 (2001) 020302(R).
  19. G.P. Harmer, D. Abbott, P.G. Taylor and J.M.R. Parrondo, in Proc. 2nd Int. Conf. on Unsolved Problems of Noise and Fluctuations (UPoN '99), 511 (1999) 189.
  20. P.V.E. McClintock, Nature 401 (1999) 23.
  21. R.P. Feynman, P.B. Leighton and M. Sands, Feynman Lectures on Physics, 1, (Addison-Wesley, Reading, MA, 1963).
  22. G.P. Harmer, D. Abbott, P.G. Taylor and J.M.R. Parrondo, Chaos 11 (2001) 705.
  23. G.P. Harmer and D. Abbott, Stat. Sci. 14 (1999) 206; Nature (London) 402 (1999) 864.
  24. J.M.R. Parrondo, G.P. Harmer and D. Abbott, Phys. Rev. Lett. 85 (2000) 5226.
  25. R. Toral, Fluct. Noise Lett. 1 (2001) L7.
  26. D.A. Meyer and H. Blumer, quant-ph/0110028.