Symmetric Clusters in Hierarchy with Cryptographic Properties
2018
https://doi.org/10.1007/978-981-13-2282-2_5Abstract
Symmetric Boolean functions play a key role in stream ciphers. Symmetric constructions provide core components in cryptographic applications. In this chapter, four meta symmetric clustering schemes (combination, crossing, variant and rotation) are organized in a hierarchy for n variables of 0-1 vectors in measuring phase spaces. Local counting properties in a cluster and global counting properties in a given level are formulated. From selected symmetric clusters, a number of various symmetric Boolean functions are formulated. Counting properties on symmetric clusters, vectors in selected clusters and special symmetric Boolean functions are listed. Four sets of symmetric Boolean functions are compared. Properties of symmetric clusters and Boolean functions are discussed. Main results are expressed in theorems and tables. Among four meta schemes, the variant scheme presents novel properties approximately with O n 2 /4 clusters on a 2D phase space different from other schemes: combinatorial O (n), crossing O (n/2) and rotation O (2 n /n) on 1D measuring phase spaces, respectively. The variant pseudorandom number generator is a similar approach on RC4 and HC128 stream ciphers using word-oriented 0-1 vectors. Further advanced researches and explorations on relevant optimal configurations are required.
References (50)
- E.B. Barker, A Statistical test suite for random and pseudorandom number generators for cryptographic applications, ITLB NIST (2000)
- J.V. Bradley, Distribution-free statistical tests (Prentice-Hall 1968)
- J. Carroll, The binary derivative test: noise filter, crypto aid, and random-number seed selector. Simulation 53(3), 129-135 (1989)
- P.J. Cameron, Combinatorics: Topics, Techniques, Algorithms (Cambridge University Press, Cambridge, 1994)
- A. Canteaut, M. Videau, Symmetric boolean functions. IEEE Trans. Inf. Theory 51(8), 2791- 2811 (2005)
- C. Carlet, On the degree, nonlinearity, algebraic thickness and nonormality of boolean function, with developments on symmetric functions. IEEE Trans. Inf. Theory 50(9), 2178-2185 (2004)
- C. Carlet, K. Feng, An infinite class of balanced functions with optimal algebraic immunity, good immunity for fast algebraic attacks and good nonlinearity, in ASIACRYPT ed. by J. Pieprzyk, LNCS, vol. 5350 (Springer 2008), pp. 425-440
- C. Carlet, G. Gao, W. Liu, A secondary construction and a transformation on rotation symmetric functions, and their action on bent and semi-bent functions. J. Comb. Theory, Ser. A, 127, 161- 175 (2014)
- F.N. Castro, L.A. Medina, Linear recurrences and asymptotic behavior of exponential sums of symmetric boolean functions. Electron. J. Combin. 18(2), P8 (2011)
- J.R. Chen. Combinatorial Mathematics (Harbin Institute of Technology Press, 2012) (in Chi- nese)
- T.W. Cusick, P. Stǎnic ǎ. Fast Evaluation, weights and nonlinearity of rotation-symmetric func- tions. Discrete Mathe. 258(1-3), 289-301 (2002)
- E. Filiol, C. Fontaine. Highly nonlinear balanced Boolean functions with a good correlation immunity, in Eurocrypt 1998, number 1403 in Lecture Notes in Computer Science, vol. 475488 (Springer-Verlag, 1998)
- S.J. Fu, C. Li, L.J. Qu, On the number of rotation symmetric boolean functions. Sci. China Inf. Sci. 53(3), 537-545 (2010)
- H.W. Gould, Some generalizations of vandermonde's convolution. Am. Math. Mon. 63(2), 84-91 (1956)
- H.W. Gould. Combinatorial Identities (Morganton, 1972)
- Y.M. Guo, G.P. Gao, Y.Q. Zhao. Recent results on balanced symmetric boolean functions, available: http://eprint.iacr.org/2012/093 (2012)
- G. Gao, X. Zhang, W. Liu, C. Carlet, Constructions of quadratic and cubic rotation symmetric bent functions. IEEE Trans. Inf. Theory 58(7), 4908-4913 (2012)
- M. Hall, Combinatorial Theory, 2nd edn. (Blaisdell, 1986)
- L.K. Hua,Loo-Keng Hua Selected Papers (Springer, 1982)
- S. Kavut, S. Maitra, M.D. Ycel, Search for boolean functions with excellent profiles in the rotation symmetric class. IEEE Trans. Inf. Theory 53(5), 1743-1751 (2007)
- D.E. Knuth. The Art of Computer Programming, vol. 1, 3rd edn. (Addison-Wesley, 1998)
- D.E. Knuth, The Art of Computer Programming, A: Combinatorial Algorithms, Part 1, vol. 4 (Addison-Wesley, 2011)
- B. Logan Jr., Information in the zero crossings of bandpass signals. Bell Syst. Tech. J. 56, 487-510 (1977)
- Q. Meng, L. Chen, F. Fu, On homogeneous rotation symmetric bent functions. Discr. Appl. Math. 158(10), 1111-1117 (2010)
- G. Paul, S. Maitra. RC4 Stream Cipher and Its Variants (CRC Press, 2012)
- J. Pieprzyk, C.X. Qu, Fast hashing and rotation-symmetric functions. J. Universal Comput. Sci. 5(1), 20-31 (1999)
- L. Qu, C. Li, K. Feng, A note on symmetric boolean functions with maximum algebraic immunity in odd number of variables. IEEE Trans. IT-53, 2908-2910 (2007)
- Sarkar, P., Maitra, S, Construction of nonlinear Boolean functions with important cryptographic properties, in Advances in Cryptology EUROCRYPT 2000, vol. 1807 in LNCS (Springer Verlag, 2000), pp. 485-506
- P. St ǎnic ǎ, S. Maitra, Rotation symmetric boolean functions -count and cryptographic prop- erties, Discr. Appl. Math. 156, 1567-1580 (2008)
- R.P. Stanley, Enumerative Combinatorics, Vol. 1, 2nd edn. (Cambridge University Press, 1997)
- W. Su, X.H. Tang, A. Pott, A note on a conjecture for balanced elementary symmetric boolean functions. IEEE Trans. Inf. Theory 59(1), 665-671 (2013)
- S.H. Su, X.H. Tang, Construction of rotation symmetric boolean functions with optimal alge- braic immunity and high nonlinearity. Des. Codes Cryptography 71(2), 183-199 (2014)
- S.H. Su, X.H. Tang, On the systematic constructions of rotation symmetric bent functions with any possible algebraic degrees. IACR Cryptology ePrint Archive 2015, 451 (2015)
- G.Z. Tu, Combinatorial Enumeration Methods & Applications (Science Press, 1981) (in Chi- nese)
- A. Tucker, Applied Combinatorics (Wiley, 2007)
- J.H. van Lint, R.M. Wilson, A Course in Combinatorics, 2nd edn. (Cambridge University Press, 2001)
- H. Wang, J. Zheng, 3D Visual Method of Variant Logic Construction for Random Sequence. Australian Information Warfare and Security, pp. 16-27 (2013)
- W.Z. Yang, J. Zheng, Variant pseudo-random number generator, Hakin9 extra. Timing Attack 06(13), 28-31 (2012)
- Z.J. Zheng, A. Maeder, The conjugate classification of the kernel form of the hexagonal grid, in Modern Geometric Computing for Visualization (Springer-Verlag, 1992) pp. 73-89. http:// link.springer.com/chapter/10.1007/978-4-431-68207-3_5 e-version
- Z.J. Zheng. Conjugate Transformation of Regular Plan Lattices for Binary Images, Ph.D. Thesis, Monash University, 1994
- J.Z.J. Zheng, C.H.H. Zheng, A framework to express variant and invariant functional spaces for binary logic, Frontiers of Electrical and Electronic Engineering in China, 5(2), 163-172, Higher Educational Press and Springer-Verlag, 2010. http://link.springer.com/article/10.1007 %2Fs11460-010-0011-4, https://doi.org/10.1007/s11460-010-0011-4
- J.Z.J. Zheng, C.H.H. Zheng, T.L. Kunii, A framework of variant logic construction for cellular automata, Cellular Automata -Innovative Modeling for Science and Engineer- ing, ed by A. Salcido (InTech Press, 2011). http://www.intechopen.com/books/cellular- automata-innovative-modelling-for-science-and-engineering/a-framework-of-variant-logic- construction-for-cellular-automata, https://doi.org/10.5772/15400
- J. Zheng, Novel pseudo-random number generation using variant logic framework, in 2nd International Cyber Resilience Conference, pp. 100-104, 2011. http://igneous.scis.ecu.edu. au/proceedings/2011/icr/zheng.pdf
- J. Zheng, C. Zheng, Variant simulation system using quaternion structure. J. Modern Opt. Taylor & Francis Press 59(5), 484-492 (2012)
- J. Zheng, C. Zheng, T.L. Kunii, From conditional probability measurements to global matrix representations on variant construction, in Advanced Topics in Measurements (InTech Press, 2012), pp. 339-370
- J. Zheng, C. Zheng, T.L. Kunii. From Local Interactive Measurements to Global Matrix Repre- sentations on Variant Construction, in Advanced Topics in Measurements (InTech Press, 2012), pp. 371-400
- J. Zheng, C. Zheng, T.L. Kunii, Interactive maps on variant phase space, in Emerging Appli- cation of Cellular Automata (InTech Press, 2013), pp. 113-196
- J. Zheng, W. Zhang, J. Luo, W. Zhou, R. Shen, Variant map system to simulate complex properties of DNA interactions using binary sequences. Adv. Pure Math. 3(7A), 5-24 (2013)
- J. Zheng, J. Luo, W. Zhou, Pseudo DNA sequence generation of non-coding distributions using variant maps on cellular automata. Appl. Math. 5(1), 153-174 (2014)
- J. Zheng, W. Zhang, J. Luo, W. Zhou, V. Liesaputra, Variant map construction to detect sym- metric properties of genomes on 2D distributions. J. Data Mining Genomics Proteomics 5, 150 (2014). https://doi.org/10.4172/2153-0602.1000150