Academia.eduAcademia.edu

Outline

Effect of the First Feeding on Enterocytes of Newborn Rats

International Journal of Molecular Sciences

https://doi.org/10.3390/IJMS232214179

Abstract

The transcytosis of lipids through enterocytes occurs through the delivery of lipid micelles to the microvilli of enterocytes, consumption of lipid derivates by the apical plasma membrane (PM) and then their delivery to the membrane of the smooth ER attached to the basolateral PM. The SER forms immature chylomicrons (iChMs) in the ER lumen. iChMs are delivered at the Golgi complex (GC) where they are subjected to additional glycosylation resulting in maturation of iChMs. ChMs are secreted into the intercellular space and delivered into the lumen of lymphatic capillaries (LCs). The overloading of enterocytes with lipids induces the formation of lipid droplets inside the lipid bilayer of the ER membranes and transcytosis becomes slower. Here, we examined components of the enterocyte-to-lymphatic barriers in newly born rats before the first feeding and after it. In contrast to adult animals, enterocytes of newborns rats exhibited apical endocytosis and a well-developed subapical endoso...

References (74)

  1. Karupaiah, T.; Sundram, K. Effects of stereospecific positioning of fatty acids in triacylglycerol structures in native and randomized fats: A review of their nutritional implications. Nutr. Metab. 2007, 4, 16. [CrossRef] [PubMed]
  2. Dash, S.; Xiao, C.; Morgantini, C.; Lewis, G.F. New insights into the regulation of chylomicron production. Annu. Rev. Nutr. 2015, 35, 265-294. [CrossRef] [PubMed]
  3. Sesorova, I.S.; Karelina, N.R.; Kazakova, T.E.; Parashuraman, S.; Zdorikova, M.A.; Dimov, I.D.; Seliverstova, E.V.; Beznoussenko, G.V.; Mironov, A.A. Structure of the enterocyte transcytosis compartments during lipid absorption. Histochem. Cell Biol. 2020, 153, 413-429. [CrossRef] [PubMed]
  4. Sesorova, I.S.; Dimov, I.D.; Kashin, A.D.; Sesorov, V.V.; Karelina, N.R.; Zdorikova, M.A.; Beznoussenko, G.V.; Mironov, A.A. Cellular and sub-cellular mechanisms of lipid transport from gut to lymph. Tissue Cell 2021, 72, 101529. [CrossRef]
  5. Mironov, A.A.; Beznoussenko, G.V. Opinion: On the Way towards the New Paradigm of Atherosclerosis. Int. J. Mol. Sci. 2022, 23, 2152. [CrossRef]
  6. Mironov, A.A.; Sesorova, I.S.; Dimov, I.D.; Karelina, N.R.; Beznoussenko, G.V. Intracellular transports and atherogenesis. Front. Biosci. 2020, 25, 1230-1258. [CrossRef]
  7. Mironov, A.A.; Mironov, A.; Derganc, J.; Beznoussenko, G.V. Membrane Curvature, Trans-Membrane Area Asymmetry, Budding, Fission and Organelle Geometry. Int. J. Mol. Sci. 2020, 21, 7594. [CrossRef]
  8. Mansbach, C.M.; Siddiqi, S.A. The biogenesis of chylomicrons. Annu. Rev. Physiol. 2010, 72, 315-333. [CrossRef]
  9. Altmann, S.W.; Davis, H.R., Jr.; Zhu, L.J.; Yao, X.; Hoos, L.M.; Tetzloff, G.; Iyer, S.P.; Maguire, M.; Golovko, A.; Zeng, M.; et al. Niemann-Pick C1 Like 1 protein is critical for intestinal cholesterol absorption. Science 2004, 303, 1201-1204. [CrossRef]
  10. Iqbal, J.; Hussain, M.M. Intestinal lipid absorption. Am. J. Physiol. Endocrinol. Metab. 2009, 296, 1183-1194. [CrossRef]
  11. Brunham, L.R.; Kruit, J.K.; Pape, T.D.; Timmins, J.M.; Reuwer, A.Q.; Vasanji, Z.; Marsh, B.J.; Rodrigues, B.; Johnson, J.D.; Parks, J.S.; et al. Beta-cell ABCA1 influences insulin secretion; glucose homeostasis and response to thiazolidinedione treatment. Nat. Med. 2007, 13, 340-347. [CrossRef] [PubMed]
  12. Lo, C.M.; Nordskog, B.K.; Nauli, A.M.; Zheng, S.; Vonlehmden, S.B.; Yang, Q.; Lee, D.; Swift, L.L.; Davidson, N.O.; Tso, P. Why does the gut choose apolipoprotein B48 but not B100 for chylomicron formation? Am. J. Physiol. Gastrointest. Liver Physiol. 2008, 294, 344-352. [CrossRef] [PubMed]
  13. Hayashi, H.; Fujimoto, K.; Cardelli, J.A.; Nutting, D.F.; Bergstedt, S.; Tso, P. Fat feeding increases size, but not number, of chylomicrons produced by small intestine. Am. J. Physiol. 1990, 259, 709-719. [CrossRef] [PubMed]
  14. He, W.; Ladinsky, M.S.; Huey-Tubman, K.E.; Jensen, G.J.; McIntosh, J.R.; Björkman, P.J. FcRn-mediated antibody transport across epithelial cells revealed by electron tomography. Nature 2008, 455, 542-546. [CrossRef]
  15. Kömüves, L.G.; Heath, J.P. Uptake of maternal immunoglobulins in the enterocytes of suckling piglets: Improved detection with a streptavidin-biotin bridge gold technique. J. Histochem. Cytochem. 1992, 40, 1637-1646. [CrossRef]
  16. Heath, J.P.; Kömüves, L.G.; Nichols, B.L. Lenten cell: Ultrastructure; absorptive properties; and enzyme expression of a novel type of cell in the newborn and suckling pig intestinal epithelium. Anat Rec. 1996, 244, 95-104. [CrossRef]
  17. Trahair, J.F.; Robinson, P.M. Enterocyte ultrastructure and uptake of immunoglobulins in the small intestine of the neonatal lamb. J. Anat. 1989, 166, 103-111.
  18. Healy, P.J.; Dinsdale, D. Protein transmission in the intestine of the newborn lamb: The involvement of acid and alkaline phosphatase activity. Histochem. J. 1979, 11, 289-298. [CrossRef]
  19. Dinsdale, D.; Healy, P.J. Enzymes involved in protein transmission by the intestine of the newborn lamb. Histochem. J. 1982, 14, 811-821. [CrossRef]
  20. Skrzypek, T.; Valverde Piedra, J.L.; Skrzypek, H.; Kazimierczak, W.; Biernat, M.; Zabielski, R. Gradual disappearance of vacuolated enterocytes in the small intestine of neonatal piglets. J. Physiol. Pharmacol. 2007, 58, 87-95.
  21. Clementi, F.; Palade, G.E. Intestinal capillaries: I. Permeability to peroxidase and ferritin. J. Cell Biol. 1969, 41, 33-58. [CrossRef] [PubMed]
  22. Bernier-Latmani, J.; Petrova, T.V. Intestinal lymphatic vasculature: Structure; mechanisms and functions. Nat. Rev. Gastroenterol. Hepatol. 2017, 14, 510-526. [CrossRef] [PubMed]
  23. Bernier-Latmani, J.; Cisarovsky, C.; Demir, C.S.; Bruand, M.; Jaquet, M.; Davanture, S.; Ragusa, S.; Siegert, S.; Dormond, O.; Benedito, R.; et al. DLL4 promotes continuous adult intestinal lacteal regeneration and dietary fat transport. J. Clin. Investig. 2015, 125, 4572-4586. [CrossRef] [PubMed]
  24. Papp, M.; Röhlich, P.; Rusznyák, I.; Törö, I. An electron microscopic study of the central lacteal in the intestinal villus of the cat. Z. Zellforsch. Mikrosk. Anat. 1962, 57, 475-486. [CrossRef]
  25. Choe, K.; Jang, J.Y.; Park, I.; Kim, Y.; Ahn, S.; Park, D.Y.; Hong, Y.K.; Alitalo, K.; Koh, G.Y.; Kim, P. Intravital imaging of intestinal lacteals unveils lipid drainage through contractility. J. Clin. Invest. 2015, 125, 4042-4052. [CrossRef] [PubMed]
  26. Ohtani, O.; Ohtani, Y. Organization and developmental aspects of lymphatic vessels. Arch. Histol. Cytol. 2008, 71, 1-22. [CrossRef]
  27. Lee, J.S. Contraction of villi and fluid transport in dog jejunal mucosa in-vitro. Am. J. Physiol. 1971, 221, 488-495. [CrossRef]
  28. Güldner, F.-H.; Wolff, J.R.; Keyserlingk, D.G. Fibroblasts as a part of the contractile system in duodenal villi of rat. Z. Zellforsch. Mikrosk. Anat. 1972, 135, 349-360. [CrossRef]
  29. Gayer, C.P.; Basson, M.D. The effects of mechanical forces on intestinal physiology and pathology. Cell. Signal. 2009, 21, 1237-1244.
  30. Karelina, N.R.; Sesorova, I.S.; Beznusenko, G.V.; Shishlo, V.K.; Kazakova, T.E.; Mironov, A.A. Ultrastructural basis for the process of lymph formation. Morfologiia 2017, 151, 7-19.
  31. Womack, W.A.; Barrowman, J.A.; Graham, W.H.; Benoit, J.N.; Kvietys, P.R.; Granger, D.N. Quantitative assessment of villous motility. Am. J. Physiol. 1987, 252, 250-256. [CrossRef]
  32. Palay, S.L.; Karlin, L.J. An electron microscopic study of the intestinal villus: II. The pathway of fat absorption. J. Biophys. Biochem. Cytol. 1959, 5, 373-384. [CrossRef] [PubMed]
  33. Casley-Smith, J.R. Identification of chylomicra and lipoproteins in tissue sections and their passage into jejunal lacteals. J. Cell Biol. 1962, 15, 259-277. [CrossRef] [PubMed]
  34. Sabesin, S.M.; Frase, S. Electron-microscopic studies of assembly; intracellular-transport; and secretion of chylomicrons by rat intestine. J. Lipid Res. 1977, 18, 496-511. [CrossRef]
  35. Scallan, J.P.; Zawieja, D.; Castorena-Gonzalez, J.A.; Davis, M.J. Lymphatic pumping: Mechanics; mechanisms and malfunction. J. Physiol. 2016, 594, 5749-5768. [CrossRef] [PubMed]
  36. Zawieja, D.C. Contractile physiology of lymphatics. Lymphat. Res. Biol. 2009, 7, 87-96. [CrossRef] [PubMed]
  37. Jang, J.Y.; Koh, Y.J.; Lee, S.H.; Lee, J.; Kim, K.H.; Kim, D.; Koh, G.Y.; Yoo, O.J. Conditional ablation of LYVE-1+ cells unveils defensive roles of lymphatic vessels in intestine and lymph nodes. Blood 2013, 122, 2151-2161. [CrossRef]
  38. D'Aquila, T.; Sirohi, D.; Grabowski, J.M.; Hedrick, V.E.; Paul, L.N.; Greenberg, A.S.; Kuhn, R.J.; Buhman, K.K. Characterization of the proteome of cytoplasmic lipid droplets in mouse enterocytes after a dietary fat challenge. PLoS ONE 2015, 10, e0126823.
  39. D'Aquila, T.; Zembroski, A.S.; Buhman, K.K. Diet Induced Obesity Alters Intestinal Cytoplasmic Lipid Droplet Morphology and Proteome in the Postprandial Response to Dietary Fat. Front. Physiol. 2019, 10, 180. [CrossRef]
  40. Denisova, G.N.; Dimov, I.D.; Zaitseva, A.V.; Artiux, L.J.; Mironov, A.A.; Karelina, N.R. Overloading of differentiated Caco-2 cells during lipid transcytosis induces glycosylation mistakes in the Golgi complex. Biocell Mendoza 2021, 45, 773-783. [CrossRef]
  41. Ježová, D.; Olsson, Y. Intravenous injection of horseradish peroxidase in the rat stimulates corticosterone and adrenocorticotropic hormone release. Acta Neuropathol. 1986, 72, 38-42. [CrossRef]
  42. Evangelista, V.; Celardo, A.; Dell'Elba, G.; Manarini, S.; Mironov, A.; de Gaetano, G.; Cerletti, C. Platelet contribution to leukotriene production in inflammation: In Vivo evidence in the rabbit. Thromb. Haemost. 1999, 81, 442-448. [PubMed]
  43. Kolpakov, V.; Rekhter, M.; Bauman, O.; Di Sciullo, A.; Di Nardo, P.; Drozdov, S.; Poggi, A.; Mironov, A. Endothelialized myointimal thickening in the rat aorta as a result of extensive freeze injury. Atherosclerosis 1993, 102, 187-193. [CrossRef]
  44. Micaroni, M.; Perinetti, G.; Di Giandomenico, D.; Bianchi, K.; Spaar, A.; Mironov, A.A. Synchronous intra-Golgi transport induces the release of Ca2+ from the Golgi apparatus. Exp. Cell Res. 2010, 316, 2071-2086. [CrossRef] [PubMed]
  45. Beznoussenko, G.V.; Kweon, H.S.; Sesorova, I.S.; Mironov, A.A. Comparison of the Cisterna Maturation-Progression Model with the Kiss-and-Run Model of Intra-Golgi Transport: Role of Cisternal Pores and Cargo Domains. Int J. Mol. Sci. 2022, 23, 3590.
  46. Sesorova, I.S.; Sesorov, V.V.; Soloviev, P.B.; Lakunin, K.Y.; Dimov, I.D.; Mironov, A.A. Role of Endothelial Regeneration and Overloading of Enterocytes with Lipids in Capturing of Lipoproteins by Basement Membrane of Rat Aortic Endothelium. Biomedicines 2022, 10, 2858. [CrossRef]
  47. Mironov, A.A., Jr.; Mironov, A.A. Estimation of subcellular organelle volume from ultrathin sections through centrioles with a discretized version of vertical rotator. J. Microsc. 1998, 192, 29-36. [CrossRef]
  48. Russ, J.C.; Dehoff, R.T. Practical Stereology; Plenum Press: New York, NY, USA, 2000; p. 382.
  49. Baluk, P.; Fuxe, J.; Hashizume, H.; Romano, T.; Lashnits, E.; Butz, S.; Vestweber, D.; Corada, M.; Molendinim, C.; Dejana, E.; et al. Functionally specialized junctions between endothelial cells of lymphatic vessels. J. Exp. Med. 2007, 204, 2349-2362. [CrossRef]
  50. Mironov, A., Jr.; Luini, A.; Mironov, A. A synthetic model of intra-Golgi traffic. FASEB J. 1998, 12, 249-252. [CrossRef]
  51. Mironov, A.A.; Beznoussenko, G.V. Models of Intracellular Transport: Pros and Cons. Front. Cell Dev. Biol. 2019, 7, 146. [CrossRef]
  52. Mironov, A.A.; Sesorova, I.S.; Seliverstova, E.V.; Beznoussenko, G.V. Different Golgi ultrastructure across species and tissues: Implications under functional and pathological conditions, and an attempt at classification. Tissue Cell 2017, 49, 186-201. [CrossRef] [PubMed]
  53. Derganc, J.; Mironov, A.A.; Svetina, S. Physical factors that affect the number and size of Golgi cisternae. Traffic 2006, 7, 85-96. [CrossRef] [PubMed]
  54. Beznoussenko, G.V.; Ragnini-Wilson, A.; Wilson, C.; Mironov, A.A. Three-dimensional and immune electron microscopic analysis of the secretory pathway in Saccharomyces cerevisiae. Histochem. Cell Biol. 2016, 146, 515-527. [CrossRef]
  55. Mironov, A.A.; Beznoussenko, G.V. Molecular mechanisms responsible for formation of Golgi ribbon. Histol. Histopathol. 2011, 26, 117-133. [CrossRef]
  56. Singh, N.; Samant, H.; Hawxby, A.; Samaniego, M.D. Biomarkers of rejection in kidney transplantation. Curr. Opin. Organ Transplant. 2019, 24, 103-110. [CrossRef]
  57. Lalioti, V.; Beznoussenko, G.V.; Mironov, A.A.; Sandoval, I.V. The E-Syt3 cleavage and traffic uncovers the primordial cisterna, a new organelle that mothers the lipid droplets in the adipocyte. Traffic 2022, 23, 21-41. [CrossRef] [PubMed]
  58. Hung, Y.H.; Buhman, K.K. DGAT1 deficiency disrupts lysosome function in enterocytes during dietary fat absorption. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 2019, 1864, 587-595. [CrossRef]
  59. Yao, Y.; Kim, G.; Shafer, S.; Chen, Z.; Kubo, S.; Ji, Y.; Luo, J.; Yang, W.; Perner, S.P.; Kanellopoulou, C.; et al. Mucus sialylation determines intestinal host-commensal homeostasis. Cell 2022, 185, 1172-1188. [CrossRef]
  60. Van Dyck, F.; Braem, C.V.; Chen, Z.; Declercq, J.; Deckers, R.; Kim, B.M.; Ito, S.; Wu, M.K.; Cohen, D.E.; Dewerchin, M.; et al. Loss of the PlagL2 transcription factor affects lacteal uptake of chylomicrons. Cell Metab. 2007, 6, 406-413. [CrossRef]
  61. Hung, Y.H.; Carreiro, A.L.; Buhman, K.K. Dgat1 and Dgat2 regulate enterocyte triacylglycerol distribution and alter proteins associated with cytoplasmic lipid droplets in response to dietary fat. Biochim. Biophys. Acta 2017, 1862, 600-614. [CrossRef]
  62. Zhang, F.; Zarkada, G.; Han, J.; Li, J.; Dubrac, A.; Ola, R.; Genet, G.; Boyé, K.; Michon, P.; KÜnzel, S.E.; et al. Lacteal junction zippering protects against diet-induced obesity. Science 2018, 361, 599-603. [CrossRef] [PubMed]
  63. Yuji, M.; Fujimoto, M.; Qi, W.M.; Takahara, E.I.; Mantani, Y.; Udayanga, K.G.; Takeuchi, T.; Warita, K.; Yokoyama, T.; Hoshi, N.; et al. Persorption of IgG-Fc-coated particulates from intestinal lumen into portal blood via villous columnar epithelial cells in rat small intestine. J. Vet. Med. Sci. 2012, 74, 1447-1452. [CrossRef] [PubMed]
  64. Nguyen, T.; Costa, E.J.; Deibert, T.; Reyes, J.; Keber, F.C.; Tomschik, M.; Stadlmeier, M.; Gupta, M.; Kumar, C.K.; Cruz, E.R.; et al. Differential nuclear import sets the timing of protein access to the embryonic genome. Nat. Commun. 2022, 13, 5887. [CrossRef] [PubMed]
  65. Henne, W.M. Discovery and Roles of ER-Endolysosomal Contact Sites in Disease. Adv. Exp. Med. Biol. 2017, 997, 135-147.
  66. Pelletier, J.F.; Glass, J.I.; Strychalski, E.A. Cellular mechanics during division of a genomically minimal cell. Trends Cell Biol. 2022, 32, 900-907. [CrossRef] [PubMed]
  67. Han, L.; Mich-Basso, J.D.; Li, Y.; Ammanamanchi, N.; Xu, J.; Bargaje, A.P.; Liu, H.; Jeong, J.-H.; Franks, J.; Stolz, D.B.; et al. Changes in nuclear pore numbers control nuclear import and stress response of mouse hearts. Dev. Cell 2022, 57, 2397-2411.
  68. Kamyshova, V.V.; Karelina, N.R.; Mironov, A.A.; Mironov, V.A. Morphofunctional features of different divisions of the microcircu- latory bed of jejunal villi in the white rat. Arkh Anat Gistol Embriol. 1985, 88, 44-50.
  69. Karaganov, I.L.; Mironov, A.A.; Mironov, V.A. Scanning electron microscopy of native preparations of vascular endothelium. Arkh. Anat. Gistol. Embriol. 1986, 90, 93-105.
  70. Ohtani, O.; Ohtsuka, A. Three-dimensional organization of lymphatics and their relationship to blood vessels in rabbit small intestine. A scanning electron microscopic study of corrosion casts. Arch. Histol. Jpn. 1985, 48, 255-268. [CrossRef]
  71. Giuvărăşteanu, I. Scanning electron microscopy of vascular corrosion casts -standard method for studying microvessels. Rom. J. Morphol. Embryol. 2007, 48, 257-261.
  72. Aharinejad, S.; Lametschwandtner, A.; Franz, P.; Firbas, W. The vascularization of the digestive tract studied by scanning electron microscopy with special emphasis on the teeth, esophagus, stomach, small and large intestine, pancreas, and liver. Scanning Microsc. 1991, 5, 811-849. [PubMed]
  73. He, W.; Kivork, C.; Machinani, S.; Morphew, M.K.; Gail, A.M.; Tesar, D.B.; Tiangco, N.E.; McIntosh, J.R.; Bjorkman, P.J. A freeze substitution fixation-based gold enlarging technique for EM studies of endocytosed Nanogold-labeled molecules. J. Struct. Biol. 2007, 160, 103-113. [CrossRef] [PubMed]
  74. Mironov, A.A.; Beznusenko, G.V.; Sesorova, I.S.; Banin, V.V. How to measure structures, or new stereology: III. Stereology and electron microscopy. Morfologiia 2006, 129, 72-75. [PubMed]